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Introduction

The Republic of China (Taiwan) receives the majority of its
precipitation from typhoons from the Pacific Ocean requiring
seasonal storage.  The demand for water in Taiwan is increasing
at 14%/a. The scope for constructing new reservoirs is, however,
limited because the rivers are steep and in addition there is an
environmental awareness deterring the construction of new dams.
In the interim therefore,  existing reservoirs will have to be
operated on a variable draft basis.

The Min-Der Reservoir on the Houlong River south of Taipei
supplies the Miaoli basin with water. The bulk of the water is used
for irrigation, but the town of Miaoli and a growing industry,
including a fertiliser factory and petro-chemical industry, also
receive water from the reservoir. The reservoir catchment area is
61 km2, the mean annual rainfall is 1 992 mm and the mean annual
runoff is 90.6 m3. The effective reservoir capacity is 14 x 106 m3

and the average annual supply is 28 x 106 m3 which is limited by
the reservoir storage and could be considerably larger if enough
water were available over the dry season (October to February).

Rainfall and river flow data

Only 22 years of streamflow records exist, so the data were
extended using a deterministic rainfall-runoff model (RAFLER)
(Stephenson and Paling, 1992). Rainfall data were available for
94 years in 10 d intervals for each of four rain stations surrounding
the Min-Der Reservoir catchment. The rainfall data were proc-
essed into usable form as follows:
• the 10 d values were summed for each month to produce a

monthly figure for each rain station;
• the data from the four rain stations were averaged.

The program was calibrated by comparing generated data with
actual data. Once the most accurate solution was achieved by

adjusting parameters, the rainfall data for 1901 to 1994 were
processed. The output was read into a text file which was then
used in various sections of a computer program for the optimisation
of the reservoir operation.  The program was incorporated in an
expert system including the following steps using a menu-driven
VisualBasic system:

• Selection of data
• Extension of time series for river inflow using RAFLER
• Analysis of each period to determine frequency of operation

at different levels, for different drafts and initial storages
• Set up probability matrix
• Use optimum operating rule in a simulation
• Plot resulting drafts and storage levels over time series

Optimisation model

Any draft that does not meet the demand has a cost associated
with it. If an industry/farmer does not receive the amount of water
needed for the product/crop, their production/yield is going to
decrease, thereby inducing financial losses. The model to be
optimised consists of an objective function to minimise the
probable cost to the economy of damages due to water restrictions
(hereafter termed the cost):

minimise Z =  Σ (C
d
 Σ h(s,i,d)   (1)

      
d      s,i

where:
s is the season
d is the draft as a percentage of total demand
i is the initial storage as a percentage of total capacity
C

d
 is the cost associated with draft d;

h(s, i, d) is the probability of having draft d given an initial
storage i inseason s.  h(s, i, d) is what is being solved for and
will ultimately define the operating rule.

The constraints are as follows:
• The storage at the end of one season must equal the storage

at the beginning of the following season (continuity):
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Σ [P(s,i,d,f) x h(s,i,d)] = Σ h(s + 1, i’,d)   (2)
      d,i     d,i’

where:
P(s,i,d,f) is the probability that the final storage of the
season is f, having started with an initial storage i and
having a draft d in season s
i’ is the initial storage for season s + 1 and has the same
value as the end storage f for season s, i.e. i’ = f in Eq. (2).

Equation (2) is based on the storage at the end of one season
(f

s
) equalling the storage at the beginning of the following

season (i’
s+1

). Thus the probability of ending a season with a
certain storage must equal the probability of beginning the
following season with the same storage. Serial correlation is
therefore not accounted for, necessitating simulations at a
later stage.  The right-hand side is the probability of starting
a season with a storage of i’. The left-hand side is the
probability of ending the previous season with a storage f. The
probability that the end storage is f is based on two things
happening simultaneously - namely the probability of start-
ing with a certain storage (P) multiplied by the probability of
having a certain draft (h).

The probability of any mutually exclusive event happen-
ing is the sum of the individual probabilities i.e. Σ(P x h).

It will be noted that the formulation is based on the
queuing theory of Langbein (1958).  It does not require the
lumping of initial storage and inflow used by Thomas and
Watermeyer (in Maass et al., 1962).  The formulation was
initially used by Stephenson (1968).

• Ensure that there is some initial storage:

 Σ h(s,i,d) = 1 for all s   (3)
  s,i

• The probabilities must be limited to a fraction:

0 < h(s,i,d) < 1 for all s, i, d   (4)

Probabilities of end storages

The optimisation model requires the probabilities of ending a
time interval with various end storages having started the season
with a certain initial storage and having had a set draft throughout
the season (P(s,i,d,f)).

The probability P(s,i,d,f) is calculated for every possible
combination of initial storage representative, draft increment,
season and end-storage category. This is obtained by simulating
reservoir operation for a season using the following equation:

es
j
 = es

j-1
 + flow(j) - draft - evap(jm) x area   (5)

where:
j is the month number (1 - 12, 13 - 24 ...)
jm is the numerical value for each month in the year
(jm = 1 = January etc.)
es

j
 is the end storage for month j (Mm3)

es
j-1

 is the initial storage for month j
es

j-1
 = i for the first month of the season

flow(j) is the river flow into reservoir in month j
(Mm3/month)
draft is the allowable supply from the reservoir for the season
(Mm3/month)
evap(jm) is the evaporation for month jm (m)
area is the surface area of the reservoir (Mm2).

The section of the computer program following the rainfall-
runoff calculations calculates the above probabilities for two
alternatives of an operating rule. They both work on the same
principle, but with slightly different values. The values for the
initial storages, drafts and end-storage categories used can be
compared in  Table 1. Apart from the different values (categories)
the way in which the calculations proceed is the same.

Running the optimisation

The cost to the economy of any draft below the demand was
estimated by issuing all consumers (industry, agriculture and
domestic) with a questionnaire. The costs per month to each
individual sector of different levels of rationing were established.

TABLE 1
INITIAL STORAGES, DRAFTS AND END STORAGE CATEGORIES
 ILLUSTRATING THE  SET-UP FOR OPERATING RULES 1 AND 2

Operating Rule 1 Operating Rule 2

Initial storages 10, 30, 50, 70, 90% 0, 20, 40, 60, 80, 100%
of capacity of capacity

Drafts 20, 40, 60, 80, 100% 0, 20, 40, 60, 80, 100%
of demand of demand

End-storage categories 0 < es
j
 < 20 0

20 < es
j
 < 40 0 < es

j
 < 20

40 < es
j
 < 60 20 < es

j
 < 40

60 < es
j
 < 80 40 < es

j
 < 60

80 < es
j
 <= 100 60 < es

j
 < 80

80 < es
j
 < 100
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That is, the cost to the economy due to receiving insufficient
water in times of drought was estimated.

The resulting cost function can be represented by the follow-
ing set of equations (Fig. 2):

1.5 < x < 4.5 y = -0.5 x + 2.25
1.3 < x < 1.5 y = -2.5 x + 5.25
0.3 < x < 1.3 y = -130 x + 171

where:
x = water use,
y = cost per month.

Draft is given as a volume in 106 m3/month. Cost is given in
million New Taiwan Dollars (NTD)/month.  A punitive cost of
1 000 000 x 106 NTD/month for a draft of zero was used in the
model for Operating Rule 2, i.e. it prevented the reservoir from
running dry to result in zero draft.

The objective function to minimise probable economic loss
due to rationing water over all seasons - Z = Σ     (C

d
 Σ h(s,i,d)] - for

Operating Rule 1 becomes:   
d         s,i

min Z = 0.45 Σ h(s,w,80) + 0.9 Σ h(s,x,60) + 1.35 Σ h(s,y,40)
    s,w s,x        s,y

  + 54 Σ h(s,z,20)    (6)
       s,z

where:
w (w = 90, 70), x ( x = 90, 70, 50), y (y = 90, 70, 50, 30),
and z (z = 90, 70, 50, 30, 10) are the sets of feasible initial
storages that can support the given draft.

w ≠ x ≠ y ≠ z because certain drafts are not feasible given the
initial storage. A low initial storage could not possibly sustain a
large draft for the season e.g. an initial storage of 10% could not
sustain a draft of 100%. A simulation was run for each of 94 years
to determine the end storage of every combination of initial
storage and draft for every season. Those combinations that often
resulted in the reservoir running dry were omitted.

The objective function for Operating Rule 2 becomes:

min Z = 0.45 Σ h(s,w,80) + 0.9 Σ h(s,x,60) + 1.35 Σ h(s,y,40)
    s,w s,x        s,y

  + 54 Σ h(s,z,20) + 1 000 000 Σ h(s,v,0)   (7)
where:

       s,z s,v

w (w = 100, 80), x ( x = 100, 80, 60), y (y = 100, 80, 60, 40),
z (z = 100, 80, 60, 40, 20), and v (v = 100, 80, 60, 40, 20, 0)
are the sets of feasible initial storages that can support the
given draft.

Constraint 1 is applied for all but one category of end-storage f,
namely f = 80 - 100 because for each combination of initial
storage and draft, the sum of the probabilities of end storage
equals unity.

The variables to be optimised in the model are the probabili-
ties of having a draft d given an initial storage i in each of the
seasons s (h(s,i,d)).  The models developed above were solved
using the QuattroPro optimiser.

The resulting Operating Rule 1 is represented graphically in
Fig. 3.  The probabilities h(s, i, d) for each initial storage are the
values just above or below the curve.  Fig. 3 gives the operating
draft for any storage for each season.
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TABLE 2
COMPARISON OF AVERAGE ANNUAL COST, AVERAGE
ANNUAL WATER USED AND CUMULATIVE STORAGES

LESS THAN OR EQUAL TO ZERO FOR THE THREE
OPERATING RULES

Operating Average cost Average water Storages = 0
rule (10 6 x NTD / a) used

( 106 m3 / a)

1 31 930 31.9 3
2 42 591 32.3 0

Old 244 686 42.6 30

Simulation

Simulation of the Min-Der Reservoir operation was used as a tool
to investigate and compare the impacts of each operating rule.
   Equation (5) was used with a monthly time increment to
simulate the operation of the reservoir:
Should the end storage for any month be zero, the draft for the
following month is set to zero.  If the draft has been set to zero and
the storage in the reservoir increases sufficiently during the
season, a small draft is allowed for the rest of the season.  The cost
incurred by each draft and the total amount of water used are
summed for the series and the number of times the reservoir runs
dry are counted.

Results

The costs, amounts of water used and number of storages less than
or equal to zero for the simulation of all three operating rules can
be found in Table 2.

The Old Operating Rule is indicated in Fig. 1. Operating Rule
1 clearly produces the least cost solution, almost one eighth of the
cost of the Old Operating Rule. The reservoir, however, runs dry

Figure 3 (top)
Graphical representation of Operating
Rule 1 as defined by QuattroPro and
LINDO: (a) season 1; (b) season 2;

(c) season 3; (d) season 4
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for one period of three months under Operating Rule 1 (January
to March of 1931), but not at all under Operating Rule 2. This is
despite the fact that Operating Rule 2 has more zero drafts than
Operating Rule 1 (hence the greater cost). The Old Operating
Rule runs dry 21 times for a total of 23 months. As the cost of the
operating rule increases so does the amount of water used.

Figures 4 to 5 illustrate the storages and drafts in the reservoir
resulting from Operating Rule 1 and the Old Operating Rule
respectively. As can be seen, the Old Operating Rule resulted in
the reservoir running dry several times in the 1951 to 1960 time
interval. There are also corresponding zero drafts in this time
interval. Operating Rule 1 did not have any zero drafts or
storages.

Discussion

The amount of water used in terms of an operating rule increases
with an associated increase in cost. The likely reason for this is
that if more water is utilised in any season, there is likely to be less
water left in the reservoir for the following season. Therefore a
harsher restriction will have to be implemented for the following
season, resulting in a higher cost to the economy. This is because
the cost function is non-linear.  Operating Rule 1 results in a lower

cost than the Old Operating Rule, but less water is used. This is
contrary to the anticipated result that the new operating rule
would increase the yield. As the objective to minimise cost is
achieved, however, this is not important.

It must be noted that the simulation is a hypothetical
enactment of what may occur. This is important since it is likely
that the simulation involving the Old Operating Rule does not
produce a very accurate scenario. It is possible that if the drought
was extremely severe, the reservoir operator may have restricted
more vigorously than prescribed by the operating rule and at more
frequent times. This may possibly have led to fewer incidents of
the reservoir running dry and a resulting decrease in cost to the
economy. However, this reduction in cost would not be enough
to bring into doubt the superiority of Operating Rules 1 and 2. The
same argument may even be applied to Operating Rules 1 and 2
- that the operating rules may not be strictly adhered to - which
would influence the cost to a degree.

The water demands and costs are relevant for the 1990s. As
the population increases and industry grows, they will place a
greater demand on the water resources which are barely sufficient
at present. At the same time a decrease in farming as well as
improved crops and irrigation methods might result in a decrease
in water demand from agriculture. It is difficult to gauge and
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Figure 4
Graph Illustrating Operating Rule 1 storage and draft for the hydrological years 1951 - 1960

Figure 5
Graph Illustrating Old Operating Rule storage and draft for the hydrological years 1951 - 1960
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predict these changes as historical records are required. The
historical records of water supplied to the different sectors
however, do not necessarily reflect changes in demand, but rather
fluctuations in availability of water.
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