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Abstract

A set of new discrete element equations or coefficients is herein derived for the transient 1-D. contaminant transpodmdjuation
these coefficients are based on the Green element replication of the differential equation. The cubic Hermitian interpolation
functions are incorporated into the numerical model to approximate the distribution of unknown quantities. The Green element
method (GEM) is a novel computational method which uses the singular boundary integral theory to solve mathematical
descriptions of engineering systems. Because of the unique feature of the contaminant transport problem in which steep
concentration profiles are encountered for advection-dominant cases, incorporating linear interpolation functions in GEM to
approximate these profiles may be inadequate. It is for that reason that we have in this paper incorporated Hermitiinrinterpol
functions into GEM for the contaminant transport problem to assess by how much the accuracy of the solution is enhanced. The
Hermitian GEM solutions are found to be superior to the linear GEM for two numerical examples presented.

Introduction boundary integral theory concept, and has the advantage of
producing a sparse banded global coefficient matrix which is

Considerable interest continues to be shown to the problem esdsier to invert, and readily accommodates problems where the
transport of pollutants in fluid media within numerical circles andnedium parameter varies with the spatial variables (heterog-
as well as in field investigations because of its ubiquitousnous) and with the primary variable (non-linear). We have
applications to many engineering systems - pesticides and fedemonstrated some of these advantages in some of our earlier
lizer applications on farm lands, toxic and non-toxic wast&orks (Taigbenu, 1995; 1996; Taighenu and Onyejekwe, 1995;
containment in underground repositories, air pollution problem4997a).
transport of pollutants in water bodies, transport of foreign bodies In an earlier work (Taigbenu and Onyejekwe, 1997b), we had
in animal and human blood streams, and a host of other appliéacorporated linear functions to approximate the concentration
tions, too many to mention. From the computational aspect pfofile in the GEM of the transport equation, but that gives
contaminant transport, the differential equation which goverrsignificant errors for advection-dominant transport where steep
this phenomenon exhibits intriguing features of parabolic angradients of the concentration profile exist. These interpolating
hyperbolic characteristics, depending on the relative values of thelynomials have zero-order continuity in the sense that only the
parameters of the equation. When diffusion or hydrodynamaoncentration is continuous, whereas its first derivative is discon-
dispersion is dominant, the equation behaves like a parabolic otiauous across elements. In this paper we attempt to incorporate
but when advection is dominant it behaves as a hyperbolice first-order cubic Hermitian interpolation functions into GEM
equation, and this poses the greater computational challenge. Ttrethe contaminant transport equation to minimise numerical
relative importance of these two transport processes is indicatedlors. These functions ensure that the concentration and its first
by the value of the dimensionless parameter known as the Pedcletivative are continuous at the interzonal boundaries. Any
number. improvement in the quality of the numerical solution from the use

Although a considerable number of analytic solutions to thef these functions has to be at a price of higher computing cost.
transport equation exist in one and two dimensions, they afée marginal gains in accuraeis-a-viscomputational costs are
limited to regular geometries, and serve to evaluate field paraewvaluated. Two examples of contaminant transport in 1-D. are
eters and validate numerical models (Cleary and Ungs, 1978; Vased for comparison of the linear and Hermitian GEMs, and the
Genuchten and Alves, 1982). Furthermore, a lot of work has belatter is found to be superior in representing the concentration
done in numerical circles to provide solutions to contaminaritont and in eliminating spurious oscillations, but at a cost of
transport problems. Some of the earliest works with the finitgbout one and a half times the computing speed of the former.
difference method (FDM) are those of Peaceman and Rachford
(1962) and Price et al. (1968), while steady research activities dreansport equation
continuing on the finite element method (FEM) (Anderson,
1979; Brooks and Hughes, 1982; Zienkiewicz and Taylor, 1991yhe partial differential equation that describes one-dimensional
Most of the various schemes of the FDM and FEM that haueansport with first-order decay in a homogeneous medium is
evolved are directed at eliminating the unpleasant features gifen by:
unacceptably large spurious oscillations and induced numerical _,
diffusion under advection-dominant transport. pZe&d) _ Oenh) Ot _ o fixp),  om xcxsx,

The GEM is a novel approach of implementing the singular ox* ox ot

where:
¢ = c(x,t) is the solution concentration

B 263-9-229425; fax 263-9-66983; e-mail: ae-taigbenu@nust.ac.zw D is the hydrodynamic dispersion coefficiené/[]
Received 14 August 1997; accepted in revised form 22 April 1998 U is the ambient flow velocity in the x-direction [L/T]

1)

ISSN 0378-4738 = Water SA Vol. 24 No. 4 October 1998 303



x and t are, respectively, the spatial and temporal independent D[—)»c(xi,t) G a)etipt) - G x)c)

variables

M s the rate constant of first-order decay for a - Gex)b0yt) + Glxyx)d0x,0) + )
non-conservative pollutant fT a2 3 C(x ) )

L = x_-x,is considered the length of the flow domain. [N USEH + == + pcle) "f(x’t)]dx =0, =12

*1

The enormous interest generated by the solution of Eq. (1) stemswhich @(x,t) =0 c(x,t)0x, and
from its extensive applications in the areas of agriculture, chemi-

cal, environmental, and water resources engineering. The solu- ;... .y _ dGrx)  Hix-x) - Hlx;-x) (8a)

tion of Eq. (1) requires information on the boundary conditions at ! dx 2

X, and x, and the data on c(x,t) at the initial timeTthe first-type % x; x€

or Dirichlet condition specifies the concentration at the end A = f@(x~x)dx+fﬁ(xvc)dx = fﬁ(x—x)der f&(x~x)dx

points: P X, (8b)
c(x,t) = gt), c(x,t)=9g(® (2a)  where:

€ is any small positive quantity and
and the second-type or flux-type or Neumann condition specifies H is the Heaviside function.

the flux of the substance being transported: ) ) ]
Using the property of the Dirac delta functidntakes the value

( X;58) (2b)  Of unity when xis within the element,x x <x,, andA = 0.5 when
=10y x, is at the nodes of the element. To evaluate the line integral in
Eq. (7) over a typical element, there is the need to prescribe a

or an appropriate linear combination of both boundary conditioféStribution of ¢ andp over each element. Earlier we had used

can be specified. The initial data specify the concentration at ijpterpolation functions of zero-order continuity, that is interpola-
initial time t; tion functions which provide only for the continuity of the

guantity being interpolated; its spatial derivative is discontinuous
cxt) = G0, X< X<X (2c) ~ across element's (Taigber_lu and O_nyejekw_e, 1997_b). Here we
focus on a special class of interpolation functions which are based
Hermitian Green element model on the Hermitian polynomials. They allow not only for the
continuity of the interpolated quantity, but also its first spatial
A complementary differential equation is proposed to Eq. (1) Slerivative. For a two-nodal one-dimensional element these con-
the form: ditions are satisfied by first-order continuous cubic Hermitian
, interpolation polynomials which give the following representa-
a°G _ 5(x_xi), @) tion for c(x,t):

- —<x<oo _
& ctst) = QD +

ac(xo,t)

“fo( ) D

)
- QQ¢m + Q60 (9)

where d is the Dirac delta function. The solution to Eq. (2), K
referred to as the free-space Green’s function, is: whereQ () andQ({) are the Hermitian basis functions which, in
1 terms of the local co-ordinatg= (x - x)/I, are given by:
G(x,xi) = E(I)c—xi| +k) ) (x-x) g y
Q =1-30+20 (10a)
where k is an arbitrary constant. As in our previous works
(Taigbenu, 1996) k is set to the longest spatial elemaséd in Qz = 3C2 - 2{3 (10b)
discretising the solution domain. Within an element denoted as
[x,, x]], Green’s second identity, which is given by: Ql = I{(1 - C)Z (10c)
"l ae e a6 ack™ Q =15 - D 10d
fc———G—dx:c—~G— 5 2 (10d)
y dx? Ax? dx ox = ®)
1

_ _ _ _ _ inwhichl = x,- x,. Since the Hermitian polynomials allow for the
is applied to Egs. (1) and (3) to give the integral equation  continuity of the spatial derivative of c(x,t), the quangify,t) is
approximated by the relation:

oG [~ dc [ dQ. aQ.
Di-Ae(x,b) + |e— - |G= + - .
{ (xi) [ P [ [ ax]:_xl} b0 = Lo + =20 (11)
(6)  When the relationships provided by the interpolation fqrand
fG[U— + —+pc +f{x, t)] x = 0 f are substituted into the integral Eq. (7), it simplifies to:

D[*}\,C(xi,t) + GTx)e(x,t) - G '(xp,x)c(x,,0)
Eqg. (6) can also be expressed as: - G(x;xi)¢(x2,t) + G(xl,xi)¢(x1,t)]+

= de de dc]
f G U L + =14y + Qf —Lrne
(dd)’ +ud, +—]} =0;  ij=1,2

(12)
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The line integral in Eq. (12) is evaluated using the expressions for

" , . . . i |1 e
the Hermitian functions, and the result is a system of discretis Rij*US,»j*llTij)*Xﬂij + Y+

)

opL,+US, +nT,)+ =

equations (element equations) which apply to a typical element T 7
X, X]: (1-w)DR, +US, + pTﬁ)—ﬁ}cj(m) +|(1-(DL, +US, + uT,)- K’;}q);’”) -
. (m+1) (m)
DIRc, + L] + [US, +uT,]lc, + T..[—i +f.] + w9 o s
i 5 i vy i J T.f: S e B 1-0)[T.f; ] =
ap, o, gy AT AT TR0 e
y A Pl 2 20 -0 4=
[US; eulyld, T dr " ax) 0 ij=12 The superscriptsi1+1 andmdenote the current and previous time

levels. Eq. (16) is assembled for all elements that are employed
in which the element matricesfj Rnd L, come from evaluating to discretise the computational domain to obtain the global
G* and G at the nodes of the element, and they have theefficient matrix equation:
expressions:

r Aum™v =B a7
le = = (=D ij=12 (14a) Where A is the global coefficient matrix which has a half
L 1 -1 bandwidth of 2,u™® = {c,(™?, @™¥}T is the mixed vector of
l~ —(l+l~) nodal unknow_ns,_and ,Bs the right-handfs?o_le vector which
L. = . ij=12 (14b) receives contribution from boundary and initial data, and from
¥ 1+ =T ’ ’ externally imposed contaminant load. Eq. (17) is solved at each

- time level to obtain the nodal solutioqgﬂ*@ and(pJ<m*1).

while the other element matrices in Eq. (13) have the followin

expressions: Rumerical examples

% 0 @I+l 20+l Two numerical examples of transient contaminant transport in
Si]_ = f—]G(x,xi)dx = l (14c)  1-D. spatial dimension are used to evaluate the level of enhance-
% dx 2 @i+ 20+1 ment of accuracy achieved by the Hermitian Green element

model described in the foregoing section. Our evaluation is based
on comparison of the current model with that of the earlier model

Xy

S. = fd—’;G(xx.)dx = lzR = l_z(-1)i+f*1 (14d)
Voo dx o 12
i

E ij which incorporates linear interpolation functions to approximate
the distribution of the concentration. The two examples used have
X 107+3] 7 exact solutions which serve as bench-marks for the assessment of
~ 1 +31 10[+71 14e . . i
T. = fQ.G(x,x})dx = (14e)  accuracy. Since one of the unique features of the solution to the
v J ! 20(10/+71 107+31 transport problem is that the initial concentration profile is
X1 . . . . . . .
N . B maintained with time when advection is dominant (large value of
A zg 12150+21 —(51+30) Peclet number), the examples have been so designed that the
i f ijG(x’xi)dx = a . . (14f) initial concentration profile is steep, and transport takes place
xg SU+31 ~(Sl+21) when advection is dominant. The Hermitian and linear Green

) i ) ) .. element calculations of the two examples are carried out with the
Eq. (13) is a system of first-order discrete equations in timeyank-Nicholson scheme = 0.5) which had earlier been found

There are a number of avenues available to us for simplifying thg give optimal results from the linear model (Taigbenu and
temporal derivatives Since Eq. (13) is a system of initial-valugnyejekwe’ 1997b).

differential equations, Euler and Runge-Kutta methods could be
applied to the system of equations. However, we elect to Us§&Rample 1
difference approximation for the temporal derivative

This first example is the classical 1-D. transport problem which

de; c(t,*AD —c(r) cj("””—c.('") has been used by many investigators in evaluating the perform-
= = —;  0<a<1(15) ance of their numerical models. The problem is governed b
dr)_ At At ; P 9 °d by
=1, ot . Eq. (1) withy = 0 andf(x,t) = 0. The boundary and initial

. S conditions are:
Eqg. (15) indicates that the temporal derivative is evaluated at a

time t_+a At, where { is the previous time leveb t =1t -t «0.1) = 1, de(x=o,1) _ 0.and(x, t=0)=0  (23)
is the time step or temporal element size, angdid¢ the current Ax

time level at which numerical solutions are desired, @ng &  The goution to this transport problem with the above conditions

difference weighting factor whose value varies between 0 andd. \vell-known (Ogata and Banks, 1976). The element Peclet

The value ofa positions the time level at which the temporalnumber, which is a dimensionless parameter, is defined as:
derivative is evaluated. Using familiar nomenclature in finite

difference and finite element circles, a scheme withO0 is said Pe = g_é (24)
to be the fully explicit scheme, that with= 0.5 is the Crank- D
Nicholson scheme, while that with= 1.0 is usually referred t0 54 it js indicative of the relative magnitude of dispersion or

as the fully implicit scheme. Since the temporal derivative hasision with respect to advection in the transport process. Since
been evaluated af + aAt, it is reasonable to evaluate the othete cage when advection dominates the transport provides the

:ﬁrrr}s of Eq. (13) at that time level using a weighted average Qf,qt severe test for any numerical scheme in eliminating such
e form:
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undesirable features of numerical diffusion and spurious oscill@he exact solution is given by Van Genuchten and Alves (1968).
tions, a value of 50 is used for the element Peclet number in the

numerical calculations. The simulations are done with a uniform St - 1 i Ut 1 (g)ﬁ)e’fc x+Ut
ambient velocity = 1, spatial size of each elemént 0.025, a ) = eXp(-1 579 ol 2 P 2/Di

uniform time step of 0.005, and the solution of the concentration (26)

f_ront IS presente(_:i_at: 0.5. The exact SO|UtI.0n "’_‘”d those of theThe following parameter values are incorporated in the numerical
linear and Hermitian GEM are presented in Fig. 1. The resuls, . iations: U = 1. D = 0.0005. Pe = 50 and0.2. The Crank-

indicate that the Hermitian model reproduced the concentratiqf]-holson s.cheme’ and a. unifo’rm time étep of' 0 025 are used in
front better than the linear one, and it does so without a%oth the linear and Hermitian GEMs. The numerical and exact

oscillation. solutions, obtained at times of 0.5 and 1.0, are presented in
Fig. 2. While both models did equally well in approximating the
concentration front, the results of the Hermitian model are free of

. . ) the oscillations which are observed in the linear model.
The second example is that of contaminant transport in a polluted

stream which undergoes decontamination by mechanical meaRs§nclusion
of advection from a source of freshwater and a biological/

chemical process which induces fl_rs_t-order decay of the pOHU,BI new set of discrete element equations has been obtained for the

ant. The initial and boundary conditions are: transient 1-D. contaminant transport equation by a GEM which
incorporates the Hermitian interpolation functions for the ap-

(25) proximation of unknown quantities. The model uses the free-
space Green'’s function of the 1-D. Laplace operator in the
derivation of its integral equation, and approximates the temporal

Example 2

dc(x=00,1>0) _
x

c(x,t=0)=1, c(x=0,t>0), and 0
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derivative by a weighted difference expression which yields @QGATA A and BANKS RB (1976) A solution of the differential equation
time marching scheme. For transport processes where advection of longitudinal dispersion in porous medlaS Geol. Surv. Prof. Pap.
is dominant and the gradients of the concentration profile are 411-A 7 pp. _

large, the use of linear interpolation functions for the representaE ACEMAN DW and RACHFORD HH (Jr) (1962) Numerical calcula-

tion of the profile is fraught with computational errors which tzlog;;_rgggl-dlmensmnal miscible displacemesioc. Petrol. Eng. J.

manifest as spurious oscillations and a smeared concentratigg,cg HS, CAVENDISH JC and VARGA RS (1968) Numerical methods
front. For such situations, the use of higher-order interpolation of higher-order accuracy for diffusion-convection equaticsc.
functions like Hermitian basis functions, becomes necessary. Petrol Eng. J293-300.

Although, incorporating Hermitian interpolation functions intoTAIGBENU AE (1995) The Green element methdat. J. for Num.
GEM results in a more cumbersome formulation which takes Methods in Eng.38 2241-2263.

longer computer runs, it nonetheless enhances the accuracy of tRESBENU AE (1996) Green element solutions of the 1-D. Steady
solution. Two numerical examples of contaminant transport were g;ozr;dwater flow in heterogeneous aquifetfe J. of Technol5 (2)
usz_ad_ln this paper tc.) _demonstrate this fa_ct. The Stabl_“ty Chara‘I"’AIGBENU AE (1998) Numerical stability characteristics of a Hermitian
teristics of this Hermitian model have earlier been carried outand s een element model for the fransport equati@ng. Anal. with

presented in Taighbenu (1998), and it exhibits better stability Boundary Element®2 (2) 161-165.

characteristics than the linear model. TAIGBENU AE and ONYEJEKWE OO (1995) Green element simulations
of transient nonlinear unsaturated flow equatiappl. Math. Model-
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