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Introduction

Considerable interest continues to be shown to the problem of
transport of pollutants in fluid media within numerical circles and
as well as in field investigations because of its ubiquitous
applications to many engineering systems - pesticides and ferti-
lizer applications on farm lands, toxic and non-toxic waste
containment in underground repositories, air pollution problems,
transport of pollutants in water bodies, transport of foreign bodies
in animal and human blood streams, and a host of other applica-
tions, too many to mention.  From the computational aspect of
contaminant transport, the differential equation which governs
this phenomenon exhibits intriguing features of parabolic and
hyperbolic characteristics, depending on the relative values of the
parameters of the equation.  When diffusion or hydrodynamic
dispersion is dominant, the equation behaves like a parabolic one,
but when advection is dominant it behaves as a hyperbolic
equation, and this poses the greater computational challenge.  The
relative importance of these two transport processes is indicated
by the value of the dimensionless parameter known as the Peclet
number.

Although a considerable number of analytic solutions to the
transport equation exist in one and two dimensions, they are
limited to regular geometries, and serve to evaluate field param-
eters and validate numerical models (Cleary and Ungs, 1978; Van
Genuchten and Alves, 1982).  Furthermore, a lot of work has been
done in numerical circles to provide solutions to contaminant
transport problems.  Some of the earliest works with the finite
difference method (FDM) are those of Peaceman and Rachford
(1962) and Price et al. (1968), while steady research activities are
continuing on the  finite element method (FEM) (Anderson,
1979; Brooks and Hughes, 1982; Zienkiewicz and Taylor, 1991).
Most of the various schemes of the FDM and FEM that have
evolved are directed at eliminating the unpleasant features of
unacceptably large spurious oscillations and induced numerical
diffusion under advection-dominant transport.

The GEM is a novel approach of implementing the singular

boundary integral theory concept, and has the advantage of
producing a sparse banded global coefficient matrix which is
easier to invert, and readily accommodates problems where the
medium parameter varies with the spatial variables (heterog-
enous) and with the primary variable (non-linear).  We have
demonstrated some of these advantages in some of our earlier
works (Taigbenu, 1995; 1996; Taigbenu and Onyejekwe, 1995;
1997a).

In an earlier work (Taigbenu and Onyejekwe, 1997b), we had
incorporated linear functions to approximate the concentration
profile in the GEM of the transport equation, but that gives
significant errors for advection-dominant transport where steep
gradients of the concentration profile exist. These interpolating
polynomials have zero-order continuity in the sense that only the
concentration is continuous, whereas its first derivative is discon-
tinuous across elements. In this paper we attempt to incorporate
the first-order cubic Hermitian interpolation functions into GEM
for the contaminant transport equation to minimise numerical
errors. These functions ensure that the concentration and its first
derivative are continuous at the interzonal boundaries. Any
improvement in the quality of the numerical solution from the use
of these functions has to be at a price of higher computing cost.
The marginal gains in accuracy vis-a-vis computational costs are
evaluated. Two examples of contaminant transport in 1-D. are
used for comparison of the linear and Hermitian GEMs, and the
latter is found to be superior in representing the concentration
front and in eliminating spurious oscillations, but at a cost of
about one and a half times the computing speed of the former.

Transport equation

The partial differential equation that describes one-dimensional
transport with first-order decay in a homogeneous medium is
given by:

    (1)
where:

c = c(x,t)  is the solution concentration
D is the hydrodynamic dispersion coefficient [L2/T]
U is the ambient flow velocity in the x-direction [L/T]
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x and t are, respectively, the spatial and temporal independent
variables

µ is the rate constant of first-order decay for a
non-conservative pollutant [T-1]

L = x
L
 - x

0
 is considered the length of the flow domain.

The enormous interest generated by the solution of Eq. (1) stems
from its extensive applications in the areas of agriculture, chemi-
cal, environmental, and water resources engineering. The solu-
tion of Eq. (1) requires information on the boundary conditions at
x

0
 and x

L
, and the data on c(x,t) at the initial time t

0
. The first-type

or Dirichlet condition specifies the concentration at the end
points:

c(x
0
,t) = g

0
(t),  c(x

L
,t) = g

L
(t)   (2a)

and the second-type or flux-type or Neumann condition specifies
the flux of the substance being transported:

  (2b)

or an appropriate linear combination of both boundary conditions
can be specified. The initial data specify the concentration at the
initial time t

0
:

c(x,t
0
) = c

0
(x),  x

0 
≤ x ≤ x

L
  (2c)

Hermitian Green element model

A complementary differential equation is proposed to Eq. (1) of
the form:

   (3)

where δ is the Dirac delta function. The solution to Eq. (2),
referred to as the free-space Green’s function, is:

    (4)

where k is an arbitrary constant. As in our previous works
(Taigbenu, 1996) k is set to the longest spatial element l

~
  used in

discretising the solution domain. Within an element denoted as
[x

1
, x

2
], Green’s second identity, which is given by:

    (5)

is applied to Eqs. (1) and (3) to give the integral equation

    (6)

Eq. (6) can also be expressed as:

    (7)

in which φ(x,t) = ∂ c(x,t)/∂x, and

  (8a)

  (8b)

where:
ε is any small positive quantity and
H is the Heaviside function.

Using the property of the Dirac delta function, λ takes the value
of unity when x

i
 is within the element x

1 
< x < x

2
, and λ = 0.5 when

x
i
 is at the nodes of the element. To evaluate the line integral in

Eq. (7) over a typical element, there is the need to prescribe a
distribution of c and φ over each element. Earlier we had used
interpolation functions of zero-order continuity, that is interpola-
tion functions which provide only for the continuity of the
quantity being interpolated; its spatial derivative is discontinuous
across elements (Taigbenu and Onyejekwe, 1997b). Here we
focus on a special class of interpolation functions which are based
on the Hermitian polynomials. They allow not only for the
continuity of the interpolated quantity, but also its first spatial
derivative. For a two-nodal one-dimensional element these con-
ditions are satisfied by first-order continuous cubic Hermitian
interpolation polynomials which give the following representa-
tion for c(x,t):

    (9)
  
^where Ω

j
(ζ) and Ω

j
(ζ) are the Hermitian basis functions which, in

terms of the local co-ordinate ζ = (x - x
1
)/l, are given by:

(10a)

(10b)

(10c)

(10d)

in which l = x
2 
- x

1
.  Since the Hermitian polynomials allow for the

continuity of the spatial derivative of c(x,t), the quantity φ(x,t) is
approximated by the relation:

  (11)

When the relationships provided by the interpolation for c, φ and
f are substituted into the integral Eq. (7), it simplifies to:

  (12)
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The line integral in Eq. (12) is evaluated using the expressions for
the Hermitian functions, and the result is a system of discretised
equations (element equations) which apply to a typical element
[x

1
, x

2
]:

  (13)

in which the element matrices R
ij
 and L

ij
 come from evaluating

G* and G at the nodes of the element, and they have the
expressions:

(14a)

(14b)

while the other element matrices in Eq. (13) have the following
expressions:

(14c)

(14d)

(14e)

(14f)

Eq. (13) is a system of first-order discrete equations in time.
There are a number of avenues available to us for simplifying the
temporal derivatives Since Eq. (13) is a system of initial-value
differential equations, Euler and Runge-Kutta methods could be
applied to the system of equations. However, we elect to use a
difference approximation for the temporal derivative

  (15)

Eq. (15) indicates that the temporal derivative is evaluated at a
time t

m
 + α ∆t, where t

m
 is the previous time level, ∆ t = t

m+1 
- t

m

is the time step or temporal element size, and t
m+1

 is the current
time level at which numerical solutions are desired, and α is a
difference weighting factor whose value varies between 0 and 1.
The value of α positions the time level at which the temporal
derivative is evaluated. Using familiar nomenclature in finite
difference and finite element circles, a scheme with α = 0 is said
to be the fully explicit scheme, that with α = 0.5 is the Crank-
Nicholson scheme, while that with α = 1.0 is usually referred to
as the fully implicit scheme. Since the temporal derivative has
been evaluated at t

m 
+ α∆t, it is reasonable to evaluate the other

terms of Eq. (13) at that time level using a weighted average of
the form:

  (16)

The superscripts m+1 and m denote the current and previous time
levels. Eq. (16) is assembled for all elements that are employed
to discretise the computational domain to obtain the global
coefficient matrix equation:

A
ij
u

j
(m+1) = B

i
  (17)

where A
ij
 is the global coefficient matrix which has a half

bandwidth of 2, u
j
(m+1) = {c

j
(m+1), φ

j
(m+1)}T is the mixed vector of

nodal unknowns, and B
i
 is the right-hand-side vector which

receives contribution from boundary and initial data, and from
externally imposed contaminant load. Eq. (17) is solved at each
time level to obtain the nodal solutions c

j
(m+1) and φ

j
(m+1).

Numerical examples

Two numerical examples of transient contaminant transport in
1-D. spatial dimension are used to evaluate the level of enhance-
ment of accuracy achieved by the Hermitian Green element
model described in the foregoing section. Our evaluation is based
on comparison of the current model with that of the earlier model
which incorporates linear interpolation functions to approximate
the distribution of the concentration. The two examples used have
exact solutions which serve as bench-marks for the assessment of
accuracy. Since one of the unique features of the solution to the
transport problem is that the initial concentration profile is
maintained with time when advection is dominant (large value of
Peclet number), the examples have been so designed that the
initial concentration profile is steep, and transport takes place
when advection is dominant. The Hermitian and linear Green
element calculations of the two examples are carried out with the
Crank-Nicholson scheme (α = 0.5) which had earlier been found
to give optimal results from the linear model (Taigbenu and
Onyejekwe, 1997b).

Example 1

This first example is the classical 1-D. transport problem which
has been used by many investigators in evaluating the perform-
ance of their numerical models. The problem is governed by
Eq. (1) with µ = 0 and f(x,t) = 0. The boundary and initial
conditions are:

c(0, t) = 1, , and c(x, t = 0) = 0   (23)

The solution to this transport problem with the above conditions
is well-known (Ogata and Banks, 1976). The element Peclet
number, which is a dimensionless parameter, is defined as:

  (24)

and it is indicative of the relative magnitude of dispersion or
diffusion with respect to advection in the transport process. Since
the case when advection dominates the transport provides the
most severe test for any numerical scheme in eliminating such
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undesirable features of numerical diffusion and spurious oscilla-
tions, a value of 50 is used for the element Peclet number in the
numerical calculations. The simulations are done with a uniform
ambient velocity U = 1, spatial size of each element l = 0.025, a
uniform time step of 0.005, and the solution of the concentration
front is presented at t = 0.5. The exact solution and those of the
linear and Hermitian GEM are presented in Fig. 1. The results
indicate that the Hermitian model reproduced the concentration
front better than the linear one, and it does so without any
oscillation.

Example 2

The second example is that of contaminant transport in a polluted
stream which undergoes decontamination  by mechanical means
of advection from a source of freshwater and a biological/
chemical process which induces first-order decay of the pollut-
ant. The initial and boundary conditions are:

c(x,t = 0) = 1,  c(x = 0,t > 0), and   (25)

The exact solution is given by Van Genuchten and Alves (1968).

  (26)
The following parameter values are incorporated in the numerical
calculations: U = 1, D = 0.0005, Pe = 50, and µ = 0.2. The Crank-
Nicholson scheme and a uniform time step of 0.025 are used in
both the linear and Hermitian GEMs. The numerical and exact
solutions, obtained at times of 0.5 and 1.0, are presented in
Fig. 2. While both models did equally well in approximating the
concentration front, the results of the Hermitian model are free of
the oscillations which are observed in the linear model.

Conclusion

A new set of discrete element equations has been obtained for the
transient 1-D. contaminant transport equation by a GEM which
incorporates the Hermitian interpolation functions for the ap-
proximation of unknown quantities. The model uses the free-
space Green’s function of the 1-D. Laplace operator in the
derivation of its integral equation, and approximates the temporal

Figure 1
Linear and Hermitian

GEM solutions of
contaminant

transport (Example 1)

Figure 2
Linear and Hermitian

GEM solutions of
contaminant transport

(Example 2)
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derivative by a weighted difference expression which yields a
time marching scheme. For transport processes where advection
is dominant and the gradients of the concentration profile are
large, the use of linear interpolation functions for the representa-
tion of the profile is fraught with computational errors which
manifest as spurious oscillations and a smeared concentration
front. For such situations, the use of higher-order interpolation
functions like Hermitian basis functions, becomes necessary.
Although, incorporating Hermitian interpolation functions into
GEM results in a more cumbersome formulation which takes
longer computer runs, it nonetheless enhances the accuracy of the
solution. Two numerical examples of contaminant transport were
used in this paper to demonstrate this fact. The stability charac-
teristics of this Hermitian model have earlier been carried out and
presented in Taigbenu (1998), and it exhibits better stability
characteristics than the linear model.
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