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Introduction

The problem of groundwater movement through an underlying
porous medium is very important in several aspects of engineer-
ing. Groundwater movement plays a role in agricultural, environ-
mental and industrial processes. In all these cases, the engineer
is primarily concerned with the problem of quantifying or deter-
mining the net movement of water due to losses and various
means of transport. Efficient management of aquifers requires an
accurate estimation of sustainable yield at which groundwater
can be exploited without stressing the porous medium. Recently,
this concern has acquired new dimensions due to rising concerns
about continued and sometimes intensive groundwater exploita-
tion in areas where surface water is becoming insufficient.

The flow of water through porous media is a subject of great
interest and has attracted a number of researchers. Early investi-
gations on groundwater resources of the African Sahara were
performed by Hammad (1969) on a series of wells arranged in line
with small spaces in between them. Some of his solutions could
not be related to the boundary and initial conditions proposed.
Later, Gill (1981) improved on the solution of Hammad (1969) by
providing a new set of initial and boundary conditions and
formulated a transient flow problem whose solution reduced to a
steady state after a long period of time. Mustafa (1984), working
on the same problem as  Gill (1981) introduced a leakage and a
recharge source and applied Fourier series analysis to arrive at
time-dependent solutions of his transient problem. Ram et al.
(1994) assumed  recharge as a line source in addition to a vertical
infiltration. Their solutions agreed closely with those presented
by Mustafa (1984). Onyejekwe (1994) arrived at an analytic
solution to the problem of an unsteady flow to an observation well
from a semi-confined leaky aquifer by converting both the non-
homogeneous governing equation and the boundary conditions to
a set of Sturm-Liouville problems. Further work on a semi-
confined leaky aquifer subjected to a spatially varying recharge
and transient boundary condition was presented by Onyejekwe
(1998). Plausible agreements were achieved on comparison of his

results with those obtained by Gill (1981) and Mustafa (1984).
Analytic solutions were also presented by Mustafa (1987), Ma-
rino (1974) and Latinopoulos (1981) for various cases of ground-
water flow through porous media.

In the work reported herein, we adopt the Green element
method (GEM) to determine changes in the ground water table by
comparing our numerical results with those obtained by Onyejekwe
(1998).

Problem formulation

The partial differential equation which describes the movement
of water in a confined aquifer coupled with recharge is given by
(Mustafa, 1984):

   (1)

where:
µ (the source term ) = x(1-x)
u = u(x,t), is the height of water table
v = T/S
T = aquifer transmissivity
S = the storage coefficient
L = x

0
 - x

L
 is the length of the problem domain.

For Eq. (1) to be well posed, information is required at initial time
(t = 0) and at the boundaries.

We propose a Green element numerical solution of Eq. (1).
Most of the theoretical and computational aspects involved in the
development of GEM can be found in our previous papers
(Onyejekwe, 1996; Taigbenu and Onyejekwe, 1997; Onyejekwe,
1997), and as such no effort will be made to go through them in
detail. As indicated earlier, GEM is based essentially on the
boundary integral theory, but its element-by-element implemen-
tation follows that of the Finite element method (FEM). The
resulting hybrid procedure yields a method that is more adapted
to handle those problems which give rise to considerable numeri-
cal difficulty to Boundary element method (BEM) (Taigbenu and
Onyejekwe, 1997; Onyejekwe, 1996)). We, however, hasten to
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comment that  the whole idea of GEM is not to replace other
“traditional”  and more “entrenched”  numerical techniques,
but to enhance the numerical application of the boundary integral
theory to the solution of engineering problems. In this context, we
test the suitability of GEM on a groundwater problem involving
a transient boundary specification, and a recharge function.

Application of GEM to solve Eq. (1) essentially requires the
following steps:

• Integral replication of the governing partial differential equa-
tion.

• Discretisation and representation of the resulting integral
equation on a generic element of  the problem domain.

• A finite element type solution to determine the field vari-
ables.

We start by converting Eq. (1) into its integral form. This is
achieved more straightforwardly via the Green’s second identity.
For two functions G and u which are twice differentiable, the
Green’s second identity is formally represented as:

   (2)

In order for us to be able to utilise, Eq. (2), we seek a complemen-
tary differential equation to Eq. (1). This is given by:

   (3)

where δ(x-x
i
) is the Dirac delta function. Let the solution of

Eq. (3) be of the form:

   (4)

where k is an arbitrary constant, and G(x,x
i
) is known as the

fundamental solution. It can be physically interpreted as the
response of a system governed by Eq. (3), when it is subjected to
a unit instantaneous input. The derivative of Eq. (4) with respect
to x is given by:

   (5)

where H(x,x
i
), the Heaviside function, is defined as:

   (6)

Introducing Eqs. (1) and (3) into Eq. (2) yields:

    (7)

Eq. (7) can now be simplified to give:

         (8)

in which λ  takes the value of unity if the source point x
i
  is within

the computational domain or half if it is located at the boundaries.
Eq. (8) is the integral representation of the governing partial

differential equation which is solved for each element of the
problem domain to yield both the primary variable and its
derivative. The hybridisation procedure resumes with the divi-
sion of the problem domain into elements. If for example we have
a total of   M

e
 number of elements, Eq. (8) can be written for all

the elements as:

    (9)

where the length of a typical element is given by l(e) = x
2 

(e) - x
1 

(e),
and  x

2
 , x

1
 are the co-ordinates of the end points.

Numerical procedure

Having described the theoretical framework of GEM, the basic
concepts of its numerical implementation are now discussed.
Unlike BEM, domain discretisation is not considered a disadvan-
tage; this aspect of FEM lends the GEM much of its robustness
and versatility (Onyejekwe, 1996). In addition to dividing the
problem domain into elements, the dependent variables are
specified in terms of the summation of the products of the
interpolation functions and the unknown nodal values of the field
variable.

  (10)

where:
Ω

1
(e) = 1- ξ,  Ω

2
(e) =  ξ are interpolating functions

ξ  = (x-x
1
(e))/ l(e) is a local co-ordinate.

Substituting Eq. (10) into Eq. (9) yields:

  (11)
Observe that we have substituted the longest spatial element size
in the problem domain for the arbitrary constant k; this guarantees
that the coefficient matrix remains positive. We obtain two
equations from Eq. (11), by considering the positions of the
source node at x

1 
and x

2
 respectively.  If the source node x

i
  is

located at x
1
 we obtain a discretised equation given by:

  (12)

Similarly when the source node is at x
2
, the following discretised

equation applies:
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  (13)

As a result of this procedure, we have discretised the governing
partial differential equation and replaced it with a set of quasi-
ordinary differential equations at the nodes. These equations can
now be put into a single matrix equation given by:

  (14)
and the elements of the coefficient matrix are given by:

  (15)

  (16)

  (17)

Approximation in time

Various numerical techniques can be adopted for the time deriva-
tive of Eq. (14). In the work reported herein, we shall adopt a
2-level time discretisation scheme to approximate the temporal
derivative. This procedure carries out the approximation of the
time derivative at t = t

m+α = t
m
 + α∆t. This procedure is given by

the following finite difference expression:

  (18)

where t
m
 is the previous time level, ∆ t = t

m+1
 - t

m
 is the time step,

and t
m+1

 is the current time level where the solution is determined,

and α  is a weighting factor which varies from 0 to 1, and positions
the time derivative at the time level which it will be evaluated.
Conventional definitions of these time levels in the finite differ-
ence and finite element methodologies describe α = 1.0 as the
fully implicit scheme,  α = 0 as the fully explicit scheme,  α = 0.5
is referred to as the Crank-Nicholson sheme, and  α  = 0.67 is
given as the Galerkin’s scheme. In this work, The Galerkin’s
sheme gives  results that are closest to the closed form solutions.
Since the time term has been evaluated at t

m
+ α∆t, we can now go

ahead and evaluate other terms of Eq. (14) at this time level. We
then adopt a weighted average expression given by:

  (19)

The subscripts m and m+1 refer to the value of the coefficients at
time t and t+  ∆t respectively. A global system of matrix equation
representing the problem is given by:

  (20)

where A is the coefficient matrix, and RHS is the right-hand
vector. Eq. (20) is a linear algebraic equation and can be solved
by any method based on Gaussian elimination.

Example problem and discussion

With GEM formulation completed, we now compare our numeri-
cal solution to the analytical solution obtained by Onyejekwe et
al. (1997). The example problem is a leaky confined aquifer of
length L resting on a horizontal boundary bounded by a well on
one side and a river on the other as shown in Fig. 1. The aquifer
considered is assumed to be homogeneous with respect to storage
and isotropic with respect to  transmissivity.  The water level in
the well is assumed to be U

0
 + S

o
 initially and drops to U

0
 after a

long period of time (U
0
 = 1, S

o
 = 0.5 and transmissivity, T =1,

ν  = 1 for this problem). The height of the water in the river is
assumed to be constant and that at the well varies as a function of
time. In addition a parabolic recharge function R= x(1-x) is
imposed on the system. The problem thus specified is desribed by
the following initial and boundary conditions:

Figure 1
Schematic

representation of the
problem
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Figure 2
Variation of head with distance

Figure 3
Variation of discharge with time



ISSN 0378-4738 = Water SA Vol. 24 No. 4  October 1998 313

Initial condition: u(x,0) = U
0
 +S

0

Boundary conditions: u(0,t) = U
0
+S

0
e-Pt t>0

u(L,t) = U
0
+S

0
t>0   (21)

where for this problem, P  the time coefficient is  unity , the time
step ∆ t =.01 and the total number of elements M

e
 = 10. The closed

form solution to this problem as presented by Onyejekwe (1998)
is:

  (22)

where A
n
(t) is given by:

  (23)

where:
λ

n
 = nπ/L are eigenvalues corresponding to the Fourier

decomposition of the solution.

Using Darcy’s equation, the net flow rate in the ditch can be
determined from:

 (24)

Differentiating Eq. (24) with respect to x and setting x to be zero,
the rate of flow is:

  (25)

Results and conclusions

Results obtained by GEM and those presented by Onyejekwe
(1998) are shown in Figs. 2  and 3. It can be noted that the two plots
are in agreement with the physics of the problem and the specified
initial and boundary condition. In Fig. 2 when x=0, i.e. at the well,
the height of water was found to decrease with increase in time.
After a long time interval, this value was found to be constant at
U

0
.  At x=L, the height of water in the river remains fixed at

U
0
 + S

o
. Similarly for Fig. 3, there is a steep rise in flux for values

of t less than 3, but for longer periods, the flow rate stabilises as
indicated by Eq. (25).

A boundary integral procedure has been developed for deter-
mining the changes in water table exposed to a transient boundary
condition and space-dependent recharge. This technique was
compared with the closed form solution obtained by Onyejekwe
(1998) and excellent results were obtained. Extension of GEM to
2-D application is straightforward (Taigbenu and Onyejekwe,
1995).
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