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Introduction

Forecasting of daily discharges has been one of the important
problems for hydrologists, reservoir operators and for flood
protection engineers. In this connection, the relationship between
rainfall and runoff has been widely exploited in many conceptual
rainfall-runoff models, of which the Tank Model of Sugawara
(1961; 1979) appears to be a well-known example (Phien and
Pradhan, 1983; Phien and Danh, 1997). Besides these conceptual
models, several black-box models (having little or no physical
considerations) have also been used. These models include the
time-series approach using Box-Jenkins ARIMA models, multi-
ple regression models (Phien et al., 1990 ) etc. Recently,back
propagation neural networks (BPNNs), a particular type of neural
network, have been developed and successfully used in many
fields (Gorr et al., 1994; Lachtermacher and Fuller, 1995, Maier
and Dandy; 1996).

In this study, BPNNs were used to develop models for
forecasting daily discharges (with lead time equal to one day) in
two catchments, namely the Da Nhim and La Nga Basins in the
Central Highlands of Vietnam (Phien and Danh, 1997). Besides
daily rainfall and evaporation data, the input to these models may
include past values of the discharge itself, thanks to the structure
of BPNNs. As a consequence of this flexibility in input data, the
effect of the different combinations of input data was also
investigated.

Back propagation neural networks

Neural networks are mathematical models of theorised mind and
brain activities which attempt to exploit the massively parallel
local processing and distributed storage architecture of the hu-
man brain. The basic building block of the brain and nervous
system is the neuron, that sends/receives information to/from
various parts of the body. Each neuron collects inputs from a
single or multiple sources and produces a single output in
accordance with a certain predetermined non-linear function. A
neural network model is created by interconnecting many of these
simple neuron models in a known configuration.

Among the different neural network structures, BPNNs intro-
duced by Rumelhart et al. (1986) are most popular because of
their applicability in many different areas (see, for example,
Wasserman, 1989; Gershenfield and Weigend, 1993; Phien and
Siang, 1993; Shamseldin, 1997). For forecasting purposes, a
typical BPNN model consists of an input layer, one or two hidden
layers and an output layer that has only one node. Shown in Fig.
1 is a typical simple structure which is most commonly used in
forecasting. In this case, the input layer has several nodes, each
representing an input variable. The hidden layer also has several
nodes and represents the non-linearity of the network system. The
output layer has only one node which represents the forecast
value corresponding to each set of input values. In principle, a
BPNN may have several hidden layers, but in practice, only one
or two layers are used. The number of nodes in the hidden layer
is determined mainly by trial and error. Several attempts have
been made to arrive at some kind of optimal structure of a BPNN
model (Fahlman and Lebiere, 1990; Lim and Hong, 1993).

The back propagation method

Back propagation is a systematic method for training (calibrat-
ing) multilayer neural networks. It uses a set of pairs of input and
output values (called patterns). An input pattern is fed into the
network to produce an output, which is then compared with the
actual output pattern. If there is no difference between the
network output and the actual output, then no learning is needed.
Otherwise, the weights - which express the contribution of the
input nodes to the hidden nodes, and the hidden nodes to the
output - are changed (backward from the output layer through the
hidden layer(s) to the input layer). Since the training makes use
of the actual output, the back propagation method is referred to
as a supervised training method.

Notation

The following notation system is used:
W

ji,m
(n) weight of the effect received by jth unit in layer m

caused by ith unit in layer (m-1) at nth iteration.
O

j,m
output of the jth element in layer m (m = 1, 2, ..., L)

I
i

i th element of the input.
t
j

j th element of the desired output (target)
n

m
number of units in the mth layer.
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The output of a node is obtained as a non-decreasing and
differentiable function (called an activation or transfer function)
of a linear combination (plus a bias term) of the node inputs. In
practice, the sigmoid activation function is usually used for back
propagation:
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: a bias (similar to the constant term in a regression
 model).

The output from the last layer (the network output) is compared
with the actual (desired) output and the error for pattern p is
calculated as:
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and the total error is:
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(which is equal to half of the sum of squared errors). It should be
noted that for the case of Fig.1, the number of layers L is 3 and
n

L 
is 1.

Training procedure

During the training (calibration) stage, the weights and bias
factors are estimated. The standard training procedure is summa-
rised as follows with an explanation of the notation following
Eq. (11):

1. Initialise all weights and bias factors to small random values.

Forward pass:
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b. Compute the output of the jth unit in layer m:
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so that the total error is:
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where the sum extends all over data used in the training
(calibration) stage. If the value of E reaches a minimum, the
process is terminated and the system has learned. Otherwise,
continue to the next step.

Backward pass:

4. For layer m = L, L-1,..., 1:

a. For j = 1, 2, ...,n
m
 ; compute the weight errors:

  δ j m j m j m j j mO O t O, , , ,( ).( )= − −1

  when m = L (output layer)   (8)

  δ δj m j m j m kj m
k

n

k mO O W
m

, , , , ,( ) .= − +
=

+

+

∑1 1
1

1

1

  when m = hidden layers   (9)
b. Compute the weight increments:
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c. Compute the new values of the weights:

W
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(n) + ∆W
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(n+1)  (11)

5. Go to step 2.

Output layer

Hidden layer

Figure 1
A simple back
propagation

neural network for
forecasting
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For an explanation of the above procedure, it should be noted that
the back propagation method tries to minimise the error E (or
equivalently, the sum of squared errors) by adjusting the weights.
Here:
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For the nodes in the output layer (m = L):
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Similarly, for the nodes in the hidden layer(s):
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Here η is a constant which represents the learning rate. The
larger η, the larger the changes in the weight, thus the faster the
desired weight is found. But if η is too large, it may cause
oscillations.

Rumelhart et al. (1986) proposed an additional term called
the momentum which helps to increase the learning rate without
leading to oscillations. With the addition of the momentum term,
the weight changes become:

∆W
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which is exactly Eq. (10). Clearly, α (the momentum) is a
constant which determines the effect of the past weight changes

on the current direction of the movement.
There are several unresolved issues with BPNN models.

Firstly, there is no automatic method to arrive at an optimum
architecture (represented by the number of nodes in the input
layer, the number of hidden layers and the number of nodes in
hidden layers) for a BPNN model. Trial and error procedures have
been used to arrive an acceptable structure. Secondly, the training
procedure converges very slowly. It may converge to a local
minimum of the total error (or the sum of squared errors) rather
than the global minimum or it may not converge at all! The
present study still follows the standard procedure introduced by
Rumelhart et al. (1986), but limited to the BPNN models in which
there is only one hidden layer. It should also be noted that instead
of trying to obtain the (global) minimum value of the total error,
E, the present study adopted a more relaxed stopping rule as
follows:

| E (Old) - E(New)|
 E(Old)  0.001≤  (15)

where E(Old) and E(New) denote the values of E obtained in one
iteration and the next iteration, respectively. This stopping rule
worked well in this study.

Applications

For comparison with the results obtained in the previous study
(Phien and Danh, 1997), the back propagation method is applied
to the forecasting of daily inflows to the Da Nhim Reservoir in the
Da Nhim Basin (see Fig. 1, Phien and Danh, 1997) and of the daily
discharge at Phu Dien in the La Nga Basin (see Fig. 2, Phien and
Danh, 1997), both in the Central Highlands of Vietnam. The
forecasting lead time is equal to one day. The performance
indices introduced in the previous study (Phien and Danh, 1997),
namely the efficiency index (EI), the root mean squared error
(RMSE), the root mean squared error with respect to the mean
(RMSEM) and the standard deviation (RMSES), and the mean
absolute deviation (MAD), are used again in this work.

As BPNN models use the sigmoid function of which the
output values lie in the interval [0,1], all the input values are
transformed into the interval [0.05, 0.95] (instead of [0,1] be-
cause the logistic activation function approaches 0 and 1 asymp-
totically when the variable approaches negative infinity and
positive infinity, respectively). This is done for any (input or
output) variable X by using the following equation:

X’ = 0.05 + 0.90*(X- X
max

) / (X
max

 - X
min

)  (16)

where X’ is the transformed variable, X
max 

and X
min

 are its
maximum and minimum values in the observed data.

Once the output values are obtained from a BPNN model, the
daily discharge values are obtained by transforming them back to
the original scale using the inverse transformation of Eq.(16):

X = X
min

  + (X
max

 - X
min

)* ( X’ - 0.05)/0.9  (17)

There is obviously a constraint imposed on the output by Eq. (17):
as X’ ≤ 0.95, the values obtained from a BPNN model for the
discharge are always less than or equal to X

max
: X ≤ X

max
.

Similarly, as X’≥ 0.05, the values obtained from a BPNN model
are always greater than or equal to X

min
 , i.e. X ≥ X

min
. In other

words the forecast values of the discharge will always fall in
the range of its past observed values. To avoid this constraint,
the values of X may be assumed to lie in the interval [0.8 X

min
,

1.2 X
max

], or in a wider interval.
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Da Nhim Basin

Data application

- For training (calibration): data in 7 years (1982 - 1988)
- For testing (validation) : data in 4 years (1989 - 1992)

The streamflow station under consideration is located at the Da
Nhim Dam (see Fig.1, Phien and Danh, 1997).

Calculation combinations

Case 1.Discharge at time t+1 is a function of
rainfall and evaporation at time t

Q
t+1

 = f (R
t
, E

t
).

Case 2.Discharge at time t+1 is a function of
rainfall and evaporation at time t, as
well as of the past value of discharge
at time t:

Q
t+1

 = f (R
t
, E

t
, Q

t
)

Case 3.Discharge at time t+1 is a function of
rainfalls and evaporation at times t
and t-1, and of past values of discharge
at times t, t-1, and t-2:

Q
t+1

 = f (R
t
, E

t
, R

t-1
, E

t-1
, Q

t 
, Q

t-1
, Q

t-2
 )

It should be noted that Case 1 was used in
making the Tank Model applicable to daily
flow forecasting by Phien and Danh (1997).
Case 2 is similar to Case 1, except that the
value of the discharge on the immediately
preceding day is also included among the input
factors. This is an obvious extension of Case 1,
thanks to the flexibility of the BPNN models as
compared to conceptual models such as the
Tank Model. Case 3 corresponds to an extreme
situation for a catchment area as small (about
775 km²) as that of the Da Nhim Basin: the
effect of rainfall and evaporation on the dis-
charge should not last longer than 2 d, while the
persistence in the discharge itself can be
adequately represented by its values in the last
3 d.

Discussions

l The architecture for each case is shown in
Table 1. In fact, for all the cases, trial and
error was used to determine the number of
nodes in the hidden layer because the
number of nodes in the input layer has been
specified in the Cases considered : 2 for
Case 1, 3 for Case 2, and 7 for Case 3. An
appropriate architecture of a network was found when satis-
factory values of the performance indices were obtained.

l During the training process, the learning rate (η) and the
momentum (α) were varied between 0.1 to 1.0. It was found
that the most appropriate values for both of them are 0.5.

The calculated performance statistics are shown in Table 2. In
three cases, it was clear that Case 3 gives the best results. By
examining the hydrographs showing the observed discharges and
their forecast values, it was found that in Case 1, baseflow in the

TABLE 1
ARCHITECTURE OF BPNN MODELS FOR THE

DA NHIM BASIN

 Case No. of nodes No. of nodes No. of nodes
 in input in hidden in output

layer layer layer

  1 2 2 1
  2 3 2 1
  3 7 4 1

 TABLE 2
PERFORMANCE STATISTICS OF BPNN MODELS FOR THE DA NHIM BASIN

Case  Stage   EI RMSE RMSEM MAD RMSES

1 Calibration  0.67  14.72  0.80  8.78  0.59
Validation  0.60  13.26  0.75  7.65  0.69

2 Calibration  0.74  13.07  0.71  4.20  0.53
Validation  0.68  11.86  0.67  5.35  0.62

3 Calibration  0.83  10.56  0.57  2.83  0.43
Validation  0.77   7.60  0.39  2.14  0.39

Figure 2
Comparison between observed and forecast discharges for

Da Nhim, 1987 (Case 1)

low-flow period was over-estimated while flow during the high-
flow period was under-estimated (Fig.2 for the year 1987, cali-
bration). In Cases 2 and 3, an improvement of the forecast
discharges has been achieved: values of both low-flow and peak
periods are well matched, especially in Case 3 (Fig. 3 for Case 2
and Fig. 4 for Case 3, both for the year 1987).

As seen in Table 2, the efficiency index for Case 1 is equal to
0.67 for the calibration stage and 0.60 for the validation stage.
Both are relatively smaller than the values obtained by the Tank
Model (0.69 and 0.65, respectively), indicating that the perform-
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ance of the BPNN model is a little worse than
that of the Tank Model (see Table 4, Phien and
Danh, 1997). Other performance indices indi-
cate the same thing. However, BPNN models
can readily be expanded to take into account
other influencing factors as shown in Cases 2
and 3. Table 2 clearly shows that the resulting
models are far better than the Tank Model. In
fact, by removing both E

t
 and

 
E

t-1
, the efficiency

index value reduces very slightly. These results
show important contributions of past values of
discharge toward its future values.

La Nga Basin (see Fig. 2, Phien and
Danh, 1997)

The data on rainfall, evaporation and discharge
are available from 1987 to 1994. The data in the
first three years (1987-1989) were used for
calibration and those in the last five years
(1990-1994) were used for validation. It should
be noted that the discharge station under con-
sideration is Phu Dien with a catchment area of
3 060 km², which is much larger than that of the
dam site station in the Da Nhim Basin.

Calculation combinations

Case 1.Q
t+1

 = f ([R
t
]

 mean areal,
 [E

t
]

 mean areal
).

Case 2.Q
t+1

 = f ([R
t
]

 mean areal
, [R

t-1
]

 mean areal
 ,

[E
t
]

 mean areal
, [E

t-1
]

 mean areal
, Q

t
, Q

t-1
, Q

t-2
).

Case 3.  Q
t+1

 = f ([R
t
]

all stations
, [E

t
]

 mean areal
,

Q
t
, Q

t-1
, Q

t-2
).

It should be noted that [R
t
]

 mean areal 
denotes the

mean areal rainfall calculated in Phien and
Danh (1997) with the weights obtained by the
method suggested by Sugawara (1961), while
[E

t
]

 mean areal
 is the arithmetic mean taken all over

the five stations located within the La Nga
Basin. In Case 3, [R

t
]

all stations
 means individual

values of rainfall at each of the five stations,
namely Bao Loc, Di Linh, Dai Nga, Phu Dien
and Ta Pao (see Fig. 2, Phien and Danh, 1997).

As for the Da Nhim Basin, Case 1 is the
same for the Tank Model. In Case 2, even
though for this medium size catchment, the
effect of rainfall and evaporation on discharge
may last longer than two days, but it is taken as
2 d (to reduce the number of nodes in the input
layer) while any remaining effect is assumed to
be taken care of by the past values of the
discharge itself in the last 3 d. In Case 3, due to
a large number of input variables (being equal
to 9), only the values at time t for rainfall and
evaporation were used.

Discussion

For Case 1, the results obtained from the BPNN
model are satisfactory (see Table 3) but a little

TABLE 3
PERFORMANCE STATISTICS OF THE BPNN MODEL FOR LA NGA BASIN

Case EI RMSE RMSEM MAD RMSES

1 Calibration 0.91 43.13 0.34 26.42 0.29
Verification 0.92 45.14 0.28 30.15 0.25

2 Calibration 0.99 16.28 0.10  9.63 0.09
Verification 0.96 17.35 0.11 10.24 1.00

3 Calibration 0.97 32.89 0.20 22.30 0.18
Verification 0.93 35.67 0.22 24.60 0.20

Figure 3
Comparison between observed and forecast discharges for

Da Nhim, 1987 (Case 2)

Figure 4
Comparison between observed and forecast discharges for

Da Nhim, 1987 (Case 3)
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worse than those obtained from the Tank Model. From these
results as well as from those obtained for the Da Nhim Basin, it
appears that as long as the same input variables were used, the
BPNN models can perform almost as well as the Tank Model.

An important aspect related to BPNN models is that they can
use as input data any meaningful combinations among the input
variables, including their lagged variables. As such, Cases 2
and 3 deserve more attention.

From the hydrographs of the observed and forecast dis-
charges, it was found that the discharges were very well forecast
in Case 2. Both the low flows and high flows were accurately
forecast, and the forecast hydrograph follows the observed
hydrograph very closely. Typical results are illustrated in Fig. 5
for the year 1994 of the validation stage. In Case 3, the forecast
discharge hydrograph does not match the observed hydrograph as
well as in Case 2. Discharges were overestimated during the low-
flow period. Only the peaks were forecast satisfactorily (see Fig.
6 for the year 1994 ). From the performance statistics and the
hydrographs, one can say that Case 2 is better than Case 3.
Moreover, since fewer input units are introduced to the model in
Case 2, the resulting model runs faster. It should be noted that the
RMSE for Case 2 is about 10% of the mean value and about 9%

of the standard deviation of the observed discharge, indicating
that a very satisfactory forecasting model is obtained.

It was also found that as for the Da Nhim Basin, the removal
of evaporation from the cases considered only affects the per-
formance statistics slightly, indicating that the contribution of
evaporation to the daily discharge in the La Nga Basin is
negligible. In fact the evaporation was considered in this study
because the Tank Model and many conceptual rainfall-runoff
models include this variable as one of the important factors that
produce the daily discharge at any station.

Conclusions

The results obtained in this paper indicate the capability of BPNN
models in forecasting of daily river flows using daily evaporation
and rainfall data as inputs. It should be noted that the forecasting
results were found to be better for the La Nga Basin which is the
larger basin of the two. This confirms the common belief that
forecasting of discharges for larger basins is often more accurate
than for smaller basins.

It was noted that the contribution of past values of discharge
was very important in BPNN models, just as in regression models

Figure 5
Comparison between
observed and forecast

discharges for
La Nga, 1994 (Case 2)

Figure 5
Comparison between
observed and forecast

discharges for
La Nga, 1994 (Case 3)
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(Phien et al., 1990). Perhaps this fact is the main reason for the
wide acceptance of Box-Jenkins’ ARIMA models which are
based upon the linear relationship between successive observa-
tions of the discharge itself. For BPNN models, again as for
regression models, mean areal values or individual values at all
rainfall and evaporation stations within the basin under consid-
eration can be used as inputs in forecasting the required dis-
charges. However, while individual inputs are useful in determin-
ing the contribution of each factor, the results obtained in this
work for the case of the La Nga Basin indicate that use of
appropriately calculated mean values leads to better forecasting
performance. Moreover, it was also found that the contribution of
the evaporation is not important.
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