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Introduction

World-wide, the demand for water has greatly increased while
the available amount of water is limited. As a result, reclamation
and reuse of water resources has received a great amount of
attention in recent times. This has necessitated the need to explore
new methods of exploiting water, especially water in aquifers.
One of the earlier studies on unconfined aquifers was made by
Marino and Yeh (1972). They considered a recharge well with
unsteady radial flow in an unconfined homogeneous and iso-
tropic aquifer together with a source term and solved the govern-
ing partial differential equation by a method involving transfor-
mation and Lagrange interpolation. Their results were very close
to the analytical solution of the problem under consideration.
Marino (1973) developed analytical expressions that describe the
water fluctuations in semi-pervious stream-unconfined aquifer
systems. He considered the water level in the stream to be
lowered suddenly below its initial elevation and then suddenly
raised above its initial elevation while the storage capacity of the
stream bed remained insignificant. The only setback to his work
was that the expression derived are applicable only when the rise
or decline of the water table does not exceed 50% of the initial
depth of saturation. Further work on unconfined aquifer done by
Marino (1975) on water table fluctuations beneath a circular
uniformly recharging area resulted in a numerical solution based
on the Douglas-Jones Predictor-corrector method. His solution
gave encouraging results when compared with those available in
literature. Rao and Sarma (1984) developed an analytical solution
for determining a groundwater profile resulting from localised
recharge to a finite unconfined aquifer with mixed boundary
conditions. In their study, they used the extended finite Fourier
transforms and the method of images to arrive at the analytical
solution. Their analytical results were validated by experimental
results. Latinopoulos (1981) presented an analytical solution for
groundwater flow in an unconfined aquifer under seasonal re-
charge. He showed that to have a uniform recharge rate over the
whole period does not enhance an accurate analytical solution.

Another contribution was made by Lockington (1997) in deter-
mining the water table in an unconfined aquifer bounded by a
stream. He considered the aquifer dewatering and recharging. In
his work, he presented analytical solutions of the Boussinesq
equation that describes the recharging and dewatering process in
an unconfined aquifer.

The scarcity of published work in groundwater literature
concerning the use of the boundary element method (BEM) to
solve the non-linear Boussinesq equation that describes the flow
of moisture in an unconfined aquifer is mainly due to the
numerical difficulties encountered in applying this method to
resolve non-linearity. In the work reported herein, we adopt a
novel numerical procedure (Onyejekwe 1995; Taigbenu and
Onyejekwe, 1997) based on the boundary integral theory to
resolve non-linearity in an efficient and straight-forward way.
This is the key motivation for this work.

Problem formulation

The non-linear Boussinesq equation that describes the flow of
water in an unconfined aquifer obtained under Dupuit-Forchheimer
assumptions is given by :

   (1)

where:
φ (x,t) is the height of water table above impervious layer
x and t are space and time co-ordinates respectively
K is the hydraulic conductivity
S is the specific yield
R(x,t) is the source-sink term.

For Eq. (1) to be well posed, appropriate initial and boundary
conditions should be specified. The initial condition for Eq. (1)
that describes the distribution of the scalar variable at initial time
for a computational domain, Ω, is given by:

φ(x,t
o
) = φ

o
  onΩ    (2)

The Dirichlet data that can be specified on a portion of the
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boundary Γ
1
 are given as:

φ(x,t) = φ
1
   on Γ

1
 t > t

o
   (3)

and the Neumann or flux boundary condition can be specified on
another part of the boundary as:

φ∂ φ/∂n = q
n
  on Γ

2
   (4)

where n is the unit outward vector situated on the boundary of the
problem domain.

Green element formulation (GEM)

The details of GEM formulation have already been fully dis-
cussed in earlier papers (Onyejekwe, 1995; 1996) but here some
steps are presented to clarify the methodology. GEM is imple-
mented according to:

1. Integral replication of the governing partial differential equa-
tion.

2. The presentation and the solution of the integral domain of the
boundary or initial value problem on a generic element of the
problem domain.

3. Assembly and determination of the field variables at each
node.

Before we embark on this discretisation exercise, Step 1 is worthy
of comment. We note in passing that in a typical finite element
method (FEM), the discrete replica of the governing partial
differential equation is arrived at by either the method of weighted
residual or by variational formulation. Details of both techniques
can be read from standard texts on FEM (Reddy, 1984). On the
contrary GEM implements this step by the use of the so-called
free space Green’s function or the unit response function. We
note that with the weighted residual approach, discrete algebraic
equations are obtained by two levels of approximation; one at the
partial differential equation by a more direct route which is based
on boundary integral theory and which guarantees its second-
order convergence. While the BEM finds it difficult to cope with
body force terms and non-linear physical properties and hetero-
geneity because of its “boundary-only” methodology, GEM
achieves the flexibility and robustness of FEM by adopting its
domain discretisation. The hybrid formulation of GEM actually
comes into play in Step 2 and 3 where the element-by-element
approach of the FEM is adopted.

The GEM integral replication of Eq. (1) is the same as for
BEM and is given as (Onyejekwe, 1996) :

    (5)

in which λ is the nodal angle, Γ  is the boundary of probe domain,
x

i
 identifies the nodal position of the point source, x is the field

point. Since GEM is based on the boundary integral theory, it uses
Eq. (5) and the Green’s second identity to convert Eq. (1) into its
integral form:

   (6)

where f(x,t) is the source or sink term and Φ is the natural

logarithm of the diffusivity function.
Eq. (6) can now be simplified to give :

   (7)

where:
Ψ is the gradient of the dependent variable
X is the reciprocal of the diffusivity function
λ  is the nodal angle at the source point and takes the value of
unity if the source point is within the problem domain or ½
when located at the boundaries.
H(x-x

i
) is the Heaviside function.

In order to relate Eq. (7) to the problem domain, we advanced to
Step 2 by dividing the flow domain into elements and approxi-
mating the dependent variable and its functions by piece-wise
linear basis functions:

Φ ≈ Ω
1
(ζ)Φ(t) + Ω

2
(ζ)Φ(t)    (8)

   (9)

f(x,t) ≈ Ω
1
(ζ)f

1
(t) + Ω

2
(ζ)f

2
(t)                          (10)

X(x,t) ≈ Ω
1
(ζ)χ

1
(t) + Ω

2
(ζ)χ

2
(t)               (11)

The accompanying shape functions are defined as:

  (12)

where l is the length of the element in the problem domain.
Eq. (1) is solved for each element before adding all element

contributions. This brings us to Step 3. Summation of all ele-
ments in Eq. (7) yields:

  (13)

where e represents the e-th element of the problem domain.
We apply Eq. (13) to the two ends of an element whose

boundaries ae denoted by [x
1
, x

2
]. When the source is located at

Node 1, and Eq. (13) is applied to x
1
, we obtain:

  (14)

where l
m
 is the maximum length of the problem domain.

Similarly, when the source is located at Node 2, and Eq. (13)
applied to x

2
, we obtain:

&8N(xi) % m
'
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  (15)

Eqs. (14) and (15) are then combined to give a system of discrete element
equations which can be written in the matrix form as:

  (16)

where R
ij
, L

ij
, V

ilj
 and U

ijl
 are matrix coefficients as those defined by Taigbenu

and Onyejekwe (1995) and Onyejekwe (1996). Equation (16) is a non-linear
matrix equation which requires an iterative process for its solution. Incorporat-
ing a time discretisation scheme and Picard’s algorithm to the non-linear Eq.
(16), we get:

  (17)

Example problems and discussion

To validate GEM formulation, we now compare our numerical solution with
analytical solutions obtained by Lockington (1997). The example problem
considers both recharging and dewatering a homogeneous unconfined shallow
sand aquifer bounded by a stream on one side. The aquifer is assumed to be
underlain by an impermeable horizontal base considered as a datum level with

water table elevation initially at h
0
. A hydraulic

conductivity of K=20 m/d and a specific yield of
S=0.27 are considered. For the recharging process,
the water table elevation is initially assumed to be
2.0 m above the datum level for both the stream and
the aquifer. The water level elevation in the stream
is suddenly increased to 3.0 m as shown in Fig. 1.
The closed form solution presented by Lockington
(1997) for this case is given by:

    (18)

where x is the horizontal distance and t is the time.
Similarly, for the dewatering process, the same

aquifer is assumed with water level elevation ini-
tially at 3.0 m above the datum level and then
suddenly reduced to 2.0 m as shown in Fig. 2. The
closed form solution presented by Lockington (1997)
is given by:

     (19)

Results obtained by GEM and those presented by
Lockington (1997) for recharging and dewatering
are shown in Figs. 3 and 4 respectively. Figure 3
describes a recharging water table. Note the in-
crease in head with time, and closeness of GEM and
Lockington (1997) solutions. The dewatering proc-
ess as shown in Fig. 4 is the reverse of the simula-
tion described above.

Having performed excellently for the cases
treated above, we decided to try GEM formulation
on a more demanding problem which involves a
two-stream unconfined aquifer system (Fig. 5). For
the problem under consideration, the aquifer is
exposed to constant and continuous recharge with
downstream water-level lowering. The water level
behaviour which descends linearly during a 50.0
min period is described by Guillermo and Gabriel
(1984) as:

    (20)

For the initial condition, we adopt the analytic
expression given by Marino (1973) to describe the
groundwater movement in a two-stream unconfined-
aquifer system:

    (21)

where h
1
 and h

2
 are known values of water level at

the upstream and downstream boundaries respec-
tively, t

e
 is the period at the end when equilibrium

condition is attained, L is the length of the aquifer,

RijNj % (Lij & ViljM l) R j % Uijl Xj (
dNj

dt
% f j )

Figure 1
Discharging aquifer

Figure 2
Recharging aquifer
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I
0
 is the infiltration rate and K is the hydraulic

conductivity. The initial condition, h(x,0), is ob-
tained when I

0
 = 0.

Numerical results obtained from GEM are then
compared with analytical solution presented by
Guillermo and Gabriel (1984) for different times as
shown in Fig. 6. The values of the parameters used
are h

1
= 30.0 cm, L= 100.0 cm, K= 0.1 cm/min and

the specific yield, S= 0.15. It can be seen from Fig.
6 that there is a good agreement between GEM for
all the different values and that of Guillermo and
Gabriel (1984).

Conclusions

A novel boundary integral solution was developed
for determining the water table elevation in an
unconfined homogeneous aquifer subjected to re-
charge and dewatering from a stream as well as
fluctuations induced by constant and continuous
recharge in a two-stream unconfined-aquifer sys-
tem. The solution produced excellent results when
compared with those available from literature.
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