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Abstract

An assessment of the application of varying levels of optimisation on model simulation performance and parameter identification
wasdoneusing the genetic algorithm (GA) and a10-parameter version of theM ODHY DROL OG rainfall-runoff model. Four levels
of optimisation were obtained through the use of two GA formulations, the traditional and an improved GA, and by varying the
optimisation parameterswith eachformulation. Sixteenyearsof datafroma27 km? Australian catchment wasused. With eachlevel,
ten randomly initialised optimisation runs were made. The differencesin simulation performance quantified by the coefficient of
efficiency, bias, absolute deviation and aresidual mass curve coefficient werenot consi derabl e a though the performanceimproved
asthelevel of optimisation effort increased. Superior parameter identification, and consequently a better detection of parameter
correlations was achieved with the higher optimisation levels. Based on the objective function values, the highest level of
optimisation practically located the global optimum in all theten runs. The second level achieved thisin nine of the ten runswhile
the lower two levels did not locate the global optimum in any of theten runs. It is proposed that the systematic verification of the
adequacy of optimisation should be an integral part of model calibration exercises. The form of verification should depend on the

specific problem at hand.

Introduction

The rainfall-runoff process is the component of the hydrological
cycle involving the time-space conversion of precipitation into
runoff on land. The processisvery complex considering the large
number of factorsinvolved and their variability. Rainfall-runoff
modelsidealise the rainfall-runoff processto varying degrees and
in various forms. A plethora of rainfall-runoff models exist with
Wheater et a. (1993) putting the number into the hundreds. Some
of the applications of rainfall-runoff modelling include:

e Creating, extending or filling in missing runoff datafor water
resources assessments

* Flood peak estimation and flood forecasting

* Investigating the hydrological and water quality impacts of
land use and climate change on catchments

e Studying and modelling specific processes in the catchment
such as sedimentation.

A common mode of classification based on model complexity,
groups rainfall-runoff models into: empirical, conceptual and
process models (Grayson and Chiew, 1994, Wheater et ., 1993).
Empirical models mimic the rainfall-runoff process to a slight
degree while conceptual modelsmimicthe processesmoreclosely
by usinginterconnected storagesand simple equationsto represent
the water movement among them.

Empirical and conceptual rainfall-runoff models are not de-
signed to use parameters that are directly measurable in the field
and their parameters are usually obtained by calibration. Process
models, most of which are distributed, wereinitially designed and
intended to represent the physical processes closely enough to
enable the use of measurable parameters only. Inadequacy of data
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and model imperfections have, however, been found to limit the
application of process modelsin this ‘ideal’ manner and process
model applications invariably include some form of calibration
(Refsgaard and Knudsen, 1996; Refsgaard, 1997; Western et al.,
1997; Demetriou and Panthakey, 1997).

Calibration isthe determination of aparameter set that givesa
simulated hydrological or hydrochemical series that adequately
matchesthe observed series. It isfundamentally an iterative proc-
essinvolving:

i) The smulation/s using (a) parameter set/s from the search
space to obtain the model performance/s.

ii) The determination of (a) parameter set/s that is/are likely to
perform better than that/those used in the previous simul ation/
s; and simulation/s using the new parameter set/s.

iii) The repetition of step (ii) until a satisfactory performance is
obtained or until further improvements are negligible.

During calibration, the performance is quantified by an objective
function. Some commonly used coefficientsto quantify thequality
of the simul ated series are the coefficient of determination and the
bias. Graphical plots such as hydrograph and scatter plotsare also
applied often. The three steps of the process could be undertaken
manually or automatically using an optimisation method. Effective
automatic methods are preferable to manual methods asthey give
a better chance of obtaining superior parameter sets. However,
where amodeller is adequately experienced with a given model,
manual calibration could suffice. This publication deals with
automatic calibration methods.

While research on model calibration has been active for
decades, most of the studies have focused on the location of the
global optimum and/or the efficiency at which this is achieved
(Johnston and Pilgrim, 1976; Duan et al ., 1992; Bates, 1994; Tana-
kamaru and Burges, 1996; Kuczera, 1997). Gan and Biftu (1996)
included the simulation performance in validation providing a
notable exception to this trend.
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In practical model calibrations, although global optimumloca-
tion is desirable, other issues such as the quality of the model
simulation could be moreimportant. It isoften found that aunique
global optimum parameter set does not exist because of parameter
correlations. The detection of parameter correlations therefore
becomes an integral component of parameter identification. An
adequate level of optimisation should therefore detect parameter
correlations precisely. This could be particularly important where
modificationstothestructureof therainfall-runoff model arebeing
considered or in model regionalisation studies. If significant pa-
rameter correl ationsexist, any parameter set that givesan objective
function value very close to the lower bound can be considered a
global optimum parameter set. The lower bound of the objective
function is the lowest value obtained from an adegquate number of
randomly initialised optimisations.

This study was aimed at assessing the effect of the level of
optimisation on:

e Modd simulation performance

*  Parameter identification

* The detection of parameter correlations

» The capability to locate the global optimum.

The traditional split sample calibration-validation approach was
used. Four different optimisationlevel swereobtained by usingtwo
formulationsof thegenetic algorithm (GA) method: thetraditional
andanimproved GA. Witheachformulation, different optimisation
parameters were used to achieve different levels of optimisation.
The MODHY DROL OG, a conceptual model applied extensively
in Australia (Chiew and McMahon, 1994) was applied in the
analysis using historical 16 year-long rainfall, potential evapo-
transpirationand runoff series’ fromaSouth Australian catchment.

The traditional genetic algorithm

The GA method is a population-based optimisation method that
uses the concepts of natural selection and natura evolution as
hypothesised by Darwin in his theory of evolution. The GA
approach was initiated by Holland (1975) and has been used and
studied extensively sincethen. Goldberg (1989), Davis(1991) and
Béck (1996) give comprehensive reviews of the GA. Rainfall-
runoff model calibration is an example of the global optimisation
problem that takes the form of Eq. (1). The decision variables x,
(i=1 to n) for the calibration problem are the model parameters.
f isthe objective function, which quantifies the extent of agree-
ment between the simulated series and the observed series.

minimise (X, X, ... X, <o X) (0]
subject to:

pmin < x < pmax, =12, ... N

9x)< 0

g(xj) arethe inequality constraints on some or al the design
variables
[pmin, - pmax] is the feasible range

Coding

A binary substring of bit length | isused to represent each decision
variable. Figure 1 illustrates a possible coding for a 6-parameter
problemusing an | value of 5. The coding iscommonly referred to
as a chromosome.

X X X X X X

1 2 3 4 5 6
00010 10101 11101 01010 10100 01110
Figure 1

A chromosome for a parameter set

The lower limit of the search range pmin, isrepresented by the
decoded integer 0 and the upper limit pmax by the decoded integer
2-1. The actual value of the decision variable x is determined by
linear interpolation of its decoded integer value. As an example,
the decoded value of parameter x, of Fig. 1is2°x1+2'x0+2°x 1
+22x0+2*x1=21and x,=pmin, +[21/(2>-1)] x (pmax-pmin,) =
pmin, + (21/31) (pmax-pmin). A population of p chromosomesis
generated randomly in the search space where p is the population
size.

Computation of fitness and selection

The chromosomes are decoded, the x values obtained and
simulationsdoneto obtaintheobjectivefunction (f) valuesfor each
individual of the population. Fitnesses are then computed using a
function that gives higher fitnessfor individualswith lower objec-
tive function values. Equation (11) in Section 5 gives an example
of such a function. The chromosomes (parents) to use for the
generation of new chromosomes (children) of the next generation
areselectedin proportiontothefitness. Eachindividual isassigned
toarange of amagnitudedirectly proportional toitsfitness. All the
ranges are proportioned such that they all together span from zero
to one. Two random numberslying between zero and one are then
generated. Thetwoindividual sassigned totherangeswithinwhich
the two random numbers lie are selected asapair of parents. This
isrepeated 0.5 x ¢ x ptimeswhere cisthe probability of crossover.
The probability of crossover isthe proportion of individual s of the
current populationthat will bereplaced by childrentoformthenew
population.

Crossover and mutation and replacement

Taking n asthe number of parameters, | x n givesthe bit length of
each chromosome. A point is selected randomly intherangel x n,
andthecodesof thepairsof parentsareexchanged. Thisisrepeated
for al the 0.5 x ¢ x p pairs of parents. In theillustration of Fig. 2,
parents 1 and 2 areindividual s of a 6-parameter problem in which
a5 bit binary coding has been used. With a crossover point of say
15 obtained randomly within the range 1 to 29, the chromosomes
of the two children are as shown.

of the decision variables.

Following is a description of the tradi-
tional GA applied to the general form of
theglobal optimisationproblem(Eq. (1)).

Chromosome for parent 1:
Chromosome for parent 2:
Chromosome for child 1:
Chromosome for child 2:

000111000101010 ¢ 101000110010101
010100011100001 + 101010100000110
000111000101010 ¢« 101010100000110
010100011100001 + 101000110010101

Themain stepsof thetraditional GA are:
coding, simulation and selection, cross-
over, mutation and replacement.
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Figure 2
An illustration of crossover
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To implement mutation, a small proportion of the bits of the
children are changed (1 becomes 0 and 0 becomes 1). The propor-
tion of thebitsto changeisreferredto astheprobability of mutation.
If mis the probability of mutation, then m x n x | x p randomly
selected bits are changed.

The 0.5x cx p pairs of children are then used to replacec x p
randomly selected individuals of theinitial population. Thisgives
the new population.

Selection gives fitter individuals a better chance of creating
children. Crossover helps to obtain more useful combinations of
theuseful ‘traits’ within thefitter individual sand mutation helpsto
generate new ‘ genetic material’ leading the search to new regions
of the search space. Fitter individuals are thus obtained and the
population on the whole also becomes fitter as optimisation pro-
ceeds. The steps “Computation of fitness and selection” and
“Crossover and mutation and replacement” arerepeated until a
designated termination criterion is met. This could be set at the
maximum number of simulations or generations, the minimum
improvement of the best performancein successivegenerations, or
the known global optimum.

The traditional GA is direct and population-based and is
therefore expected to work effectively on rough response surfaces
and on problems with multiple optima. However, studies with the
traditional GA have shown that it is ineffective in obtaining the
global optimum (Wangetal., 1995, Tanakamaru and Burges, 1996,
Kuczera, 1997). This is attributed to two features. Firstly, the
inability to fine-tune asthetraditional GA searchesonly in afixed
grid of the search space. Secondly, no explicit approach for leading
the search into severa regions of attraction exists. The search
therefore converges into a single region of attraction, which may
contain alocal and not the global optimum. Ndiritu (1998) devel-
oped approachesto overcomethetwo limitations. These consist of
three procedures: Fine-tuning, hill-climbing and the use of inde-
pendent subpopulation searches coupled with shuffling. The im-
proved GA was found to effectively locate the global optimaof a
rainfall-runoff model calibrationand the Griewank function, ahard
theoretical problem (Ndiritu and Daniell, 1997).

The improved genetic algorithm
Fine-tuning

Fine-tuning is achieved through the gradual reduction and shifting
of the search range. After every specified number of generations
denoted assl, thel ocationsof the parametersof thebest performing
individuals in a specified number of successive previous genera-
tions denoted as s2 are checked. If the values are within a small
portion of the search space, then the search range is reduced and
centralised about the parameter value of the best individual of the
current generation. Thisgivesafiner grid and amore concentrated
search. Equations (2) to (5) give the fine-tuning strategy.

After every sl generations and for all dimensions i = 1,2, ...., n,

rL = 2(maxxb’ - minxb)) / (xmax - xmin) j=g-s,+1,..9 (2)

rl,,<rl <rl_ 3)

pmax; g = X9 +r% 4 (pmax; — pmin;) (@

pmin g = xb9 —r 4 (pmax; - pmin; ) ©)
where:

xb/ isthe value of parameter x for the best performing
individual in generation j
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max xb’ and minxb/ are the maximum and minimum values
of xb! in the past s2 generations (including the current
generation g).

ri..andrl_  arethefine-tuning control parametersto check
premature convergence as aresult of exceedingly low r1 o
values and enlargement of the search rangein caserl, o values
aretoo high.

pmin, and pmax, are the search range limits before fine-tuning.
pmin, and pmax, the search range limits after fine-tuning.
After aseries of trids, the following values of the fine-tuning
parameterswere selected: 5, 5,0.4and 0.5for s1, 82,11 | and
ri . respectively.

Hill-climbing

Hill-climbing consists of range-shifting towards regions of the
search space that are more promising and also serves to prevent
premature convergence when the fine-tuning routine is in opera-
tion. Hill-climbing is implemented after every given number of
generationsdenoted ass3. Thestrategy isdescribedin Eq. (6) to (8)
using the same notation as for fine-tuning. The shift shi’g(pmaxi-
pmin) in Eq. (7) and (8) is the deviation from the middle of the
current search range, of themean of thevaluesof thebest individu-
asinthelast s4 generations (including the current one). A value of
5 was found reasonable and used for both s3 and s4.

After every s3 generations and for all dimensionsi = 1,2, ...., n,

g O U
B s

Shg = (pmax; — pmin; )
pmax; g = pmax; +shi'g(pmaxi - pminy) @)
pmin; o = pmin; +shy o(pmax; — pminy ) ®)

Search range-shifting in fine-tuning and hill-climbing enablesthe
GA to search beyond the initialy prescribed search space — a
featurethat could beparticularly useful whendealingwith unfamil-
iar problemsand/or data. Itis, however, appropriatethat the search
should be prevented from straying into unredlistic regions. Two
search spacesaretherefore specified. Oneistheinitial search space
[Xmin,, - Xmax ] which alows for the optimiser’s intuition and
experience but which the search can go beyond. The other is the
limiting search space[XLmin, - XLmax], which allowsfor theinput
of the known constraints and beyond which the search is not
alowed.

Independent subpopulation searches and shuffling

Thetotal population (of pindividuals) issplit inton_subpopul ations
of size p, each. Each subpopulation searches independently to an
optimum. The subpopulations are then shuffled as follows:

The populationisranked in order of performanceto form amatrix
[ch(i), i=1,2, ......, p] wherech(1) isthe best performing and ch(p)
theworst performingindividual . Theindividualsarethen allocated
tothesubpopulationsusing Eq. (9) to effect the shuffling procedure
of Duan et al. (1992):

seh(i, j) = ch(i + py - 1)) 9)
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Figure 3
Model structure of MODHYDROLOG
(adapted from Chiew and McMahon, 1994)

where:
sch(ij) isthej th (j = 1,2, ..., p) individual in thei th
(i=12, ..., n) subpopulation.

Theleast and highest parameter values of each subpopulation give
the initial search space [Xmin, - Xmax ] for the next set of
optimisations for the subpopulations. Each set of subpopulation
optimisations is referred to as an epoch. The first subpopulation
retainsall the p, individual sfromthe previous epoch and usesthem
as the initial population. The initial individuas for the other
subpopulations are generated randomly.
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Rainfall-runoff model and data

TheMODHY DROLOG, adaily rainfall-runoff model used exten-
sively in Australiawas chosen for thesimulation of monthly flows.
Sixteen years of daily rainfall, potentia evapotranspiration and
runoff data spanning 1970 to 1985 from the 27 km? Scott Creek
catchment located in South Australiawas used. The grass-covered
catchment islocated 20 km south of Adelaide, and has a predomi-
nantly duplex soil type. For the study period, the mean annua
rainfall, potential evapotranspiration and runoff values were
950 mm, 1 080 mm and 130 mm respectively. The datawere split
into two samples of eight years each: 1970-77 and 1978-85.

Figure3presentsthebasic structureof MODHY DROLOG and
theequationsgoverning water flow. Table 1 presentsbrief descrip-
tions of the model parameters while Table 2 gives the parameter
settingsand rangesappliedfor thisstudy. Nineof the19 parameters
of MODHYDROLOG were set to constant values provided by
Chiew and McMahon (1994) and the other ten were optimised.
Chiew and McMahon (1994) provide more information on the
MODHYDROLOG. An objective function that uses the square
roots of the observed and predicted values given as Eq. (10) was
applied in the calibrations.

Minimize g(q/aruni - Jrun )2
i=1

where:
N isthe length of data;
arun, is the observed discharge; and
run, isthe estimated discharge.

(10)

Methodology

Four different levels of optimisation denoted as case A to case D
were obtained by using the two GA formulations and varying the
optimisation parametersfor each asshownin Table 3. Case A and
B used the traditional GA while case C and D used the improved
GA. These parameterswere sel ected on thebasi sof experienceand
trial runs. For al the optimisations, the bit length of parameter
substring |, probability of crossover, ¢, probability of mutation, m
used was 20, 1.0 and 0.05 respectively. Instead of the traditional
2-point crossover (Fig. 2), a10-point crossover wasapplied. Inthis
crossover, thechromosome of achildisobtained from the chromo-
somes of the two parents with each contributing 5 sections.
Elitism, the process that maintains the best individua of the
current generation in the next one was also applied. Instead of the
traditional proportionate selection (Section 2.2), tournament selec-
tion wasadopted. Intournament selection, individualsare selected
randomly fromthe population andthefittest onechosenasaparent.
The number of individuals from which the parent is selected is
referred to asthetournament size. A variable power equation form
of fitness scaling (Eq. (11)) was used.
m » 0 [+ 3000/3000)
s, = %.Zl f, g/flmlj (12)

where:
sf is the scaled fitness
f. the raw objective function value
g isthe generation.

Parameter cheperfasappliedin Eq. (12) and (13) specifiedthelevel

of convergence to be achieved before the termination of an
optimisation. Equation (12) was applied to populations (cases A
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TABLE 1

PARAMETERS OF THE MODHYDROLOG MODEL
Parameter Description
ADS Fraction of total areawhich is depressional
(6(0) Routing coefficient
COEFF Maximum infiltration loss parameter
CRAK Constant of proportionality in the determination of groundwater recharge
DLEV Parameter used in deep seepage equation
DSC Depression storage capacity
EM Maximum plant-controlled rate of evapotranspiration
INSC Interception store capacity
K1 Constant of proportionality in linear part of aquifer-stream flow equation
K2 Constant of proportionality in exponential part of aquifer-stream flow eguation
K3 Exponent in exponential part of aquifer-stream flow equation
LOCATE Parameter to fix the origin of the seasonal cycle of COEFF, CRAK and SUB
MD Exponent in depression flow equation
POWER Routing exponent
SEAS Parameter to fix the amplitude in the seasonal fluctuation of COEFF, CRAK and SUB
SMSC Soil moisture store capacity
SQ Exponent in infiltration capacity equation
SUB Constant of proportionality in the calculation of interflow
VCOND Constant of proportionality in deep seepage equation

TABLE 2
PARAMETER SETTINGS AND RANGES FOR MONTHLY SIMULATIONS WITH THE
MODHYDROLOG MODEL

Parameter Set value Parameter Initial parameter ranges Parameter range limits
[Xmin,, - Xmax ] [XLmin, - XLmax]
ADS 0 INSC 1 2 0.5 6
MD 1 COEFF 90 190 20 400
DSC 0 SQ 1 5 0 10
LOCATE 1 SUB 0.1 0.3 0 1
SEAS 0 CRAK 01 0.3 0 2
POWER 0 SMSC 130 230 20 400
K2 0 EM 7 13 5 20
K3 0 CO 10 30 1 50
DLEV -0.1 K1 0.02 0.06 0 1
VCOND 0.05 0.15 0 05
TABLE 3

OPTIMISATION PARAMETER SETTINGS FOR THE FOUR LEVELS OF OPTIMISATION

Optimisation parameter Symbol Value for case

A B C D
Population size p 20 50 50 200
Subpopulation size P, 20 50 10 20
Number of subpopulations n, 1 1 5 10
Maximum number of function evaluations Ev . 5000 5 000* 5000* | 25 000*
Number of crossover positions Miroes 10 10 10 10
Tournament size t, 6 15 3 6
Maximum number of epochs en,.. 1 1 50 50

* The epoch at which maximum function evaluations reached is allowed to complete.
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and B) or subpopul ations(case C and D) while Eq. (13) wasapplied
to epochs (cases C and D):

9 g-5
if S obf; / obf, > cheperf terminate the search
i i=g-9

i=g—-4 i=g (12)
if obf,, /obf,, >cheperf terminatethe search
(13)

where:
obf, isthe objective function of the best individual in
generation i
obfpep and obfceu are the best objective function values of the
previous and the current epoch respectively.

CasesB and Cwereal so used to eval uatethesignificanceof the GA
modifications. It was observed that a single run of case B was
reaching convergence at around 800 function evaluations while
case C was converging at about 5 000 evaluations. To enable a
reasonable comparison of case B and case C, additional runswere
made for case B until and including the run at which 5 000 eva-
luationswereexceeded. Theoptimisationamongall therunsgiving
theleast objective function value was then taken asthe result of an
optimisation of caseB. For casesC and D, theepochinwhich’5000
and 25 000 simulations were respectively attained was allowed to
complete and the search then terminated. The actual number of
function evaluations therefore exceeded these values by small
amounts.

Split sample calibration-validation was applied. The 1970-77
data series was used for calibration and the 1978-85 series for
validation. Ten runs with different random initialisations were
madewith each of thefour cases. Thisallowed an evaluation of the
consistency of the objective function, the consistency of para-
metersfrom different runs and an evaluation of parameter correla-
tions. To quantify runoff simulation performance, the following
four coefficients were applied:

» The coefficient of efficiency (ce), ameasure of the variance

» Thebias (bias), ameasure of the ability to predict the volume
of discharge

* Theabsolute deviation (ade), a measure of the average depar-
ture of the predictions at every time step

» Aresidua masscurvecoefficient (rmec), ameasureof system-
atic errorsin the simulations.

Equation (14) to (17) describe the coefficients:

Dtm tm D
ce=1- 0Oy (run,- arunt)z/ Z(arunI + mn)2 ad (19
o=t = O
) tm tm
bias= } (run -arun)/ > arun, (25)
t=1 t=1
tm tm
ade= 3 [run, - aruntlil/ 2 arun, (16)
t=1 t=1
tm
rmec=1-3 O(rmsim, - rmact) / rmact[] a7)

t=1
where:
arun, isthe historical discharge,
run, the estimated discharge, and
arun the mean of the historical flows.
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In Eq. (17), rmsim, and rmact, are respectively, the residual mass
curve values for the simulated and actual flow at time t. The
coefficient of efficiency (ce),iscommonly used (Nashand Sutcliffe,
1970; Wanget al., 1995; Hughes, 1995; Y apoet a ., 1996; Gan and
Biftu, 1996; Refsgaard and K nhudsen, 1996; Franchini et al ., 1996).
Thebiashasal so been used by Sorooshianet al. (1993), Yapoet al.
(1996), Chiew and McMahon (1994), Gan and Biftu (1996) and
Refsgaard and Knudsen (1996). Aitken (1973) used aresidua mass
curve coefficient for the quantification of systematic errors in
simulated flows. Thecoefficient of efficiency andtheresidual mass
curve coefficient take on maximum values of unity in the case of
aperfect fit. The biasand absol ute deviation take perfect fit values
of zero. The absolute deviation (ade) takes on aminimum val ue of
zero but the other coefficients could take negative values.

Results and discussion

Table 4 gives the objective function values (obf) in mm and the
corresponding number of function evaluations (eval) obtained.
Figure 4 compares the objective function values graphically. It is
observed from both Table4 and Fig. 4 that better objectivefunction
values were obtained with higher optimisation effort. The differ-
ence between case C and D, however, seems minimal except for
one of the runs of case C which gave an obf of 3.494 mm. Case C
indeed gave the overall least objective function value (3.399 mm).
Based on the objective function val ues, the ten runs of case D and
9 runs of case C were considered to have practically located the
global optimum.

Although cases B and C used about the same number of
function evaluations (approximately 5 000), better objectivefunc-
tion valueswere obtained with case C indicating that theimproved
GA performed better.

Figure5 showstherel ativelocationsof parametersfromtheten
calibrations and serves to assess parameter identification. The
scaled values were obtained as (xb° — XLmin)/(XLmax — XLmin)
where xb° is the optimised value of parameter i. These plots show
abetter identificationwith casesC and D. Case A givesthe poorest
parameter consistency.

Although very close objective function values were obtained
for theten runsof case D (Table4), aunique parameter set was not
obtained (Fig. 5 case D). This observation is not unusual (see for
instance Sorooshian et al., 1993; Tanakamaru and Burges, 1996)
andiscaused by parameter interdependence. Ananalysisof param-
eter interdependence revealed high correlation coefficients be-
tween parameter SQ and COEFF and between parameter CRAK
and SUB. These observations conformed with the MOD-
HYDROLOG modéd structure. Parameters SQ and COEFF are
both used in the infiltration rate function while CRAK and SUB
determine the proportioning of theinfiltrated water into interflow
and groundwater recharge. Figure 6 presents the correlations for
the two pairs of parameters where R? denotes the correlation
coefficient and SE the standard error of observations. Cases C and
D gave better correlations than cases A and B with case A giving
the poorest correlations.

The average simulation performance coefficients obtained for
the ten runs of each optimisation level are given in Table 5. It is
evident that the simulation performance generally improved with
optimisation effort. For the validations, the differences among the
four levels were, however, not considerable except with the re-
sidual mass curve coefficient (rmcc). The calibration values are
included for completeness. In calibration, the most notable obser-
vation was the considerably lower bias values for cases C and D.
The higher rmcc values for cases A and B in calibration were not
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expected but arenot considered significant. A
possible explanation for thisisthe difference TABLE 4
in the variations quantified by the objective OBJECTIVE FUNCTION VALUES AND NUMBER OF FUNCTION EVALUATIONS
function and those quantified by the rmcc. FOR THE FOUR OPTIMISATION CASES (A TO D)
Minimising the objective function may not
always minimise the rmec. Plots of the indi- Run Case A CaseB Case C Case D
vidual coefficients (ce, bias, ade and rmcc) / bf / bf / bf | bf
indicated a lower variability for the higher eval | e vl ° eva| e vae
optimisation levels. P 320 | 3620 | 5300 | 3548 | 5040 | 3.425 | 25040 | 3.418
Thesimulation performanceresuitsindi- | 5 260 | 3827 | 5050 | 3568 | 5030 | 3.402 | 25040 | 3.426
cate that location of theglobal optimummay | 3 360 | 3664 | 5400 | 3628 | 5010 | 3.395 | 25080 | 3.407
not necessarily givesimulationssignificantly | 4 380 | 3985 | 5350 | 3599 | 5030 | 3.415 | 25040 | 3.403
Superior o those obtained with lower levels | g 320 | 3847 | 5350 | 3583 | 5020 | 3.494 | 25020 | 3.418
of optimisation- especidly invaidation. The | g 240 | 3684 | 5250 | 3552 | 5030 | 3.422 | 25020 | 3.405
global optimum search could attimesthere- - 5 300 | 3677 | 5350 | 3534 | 5030 | 3407 | 25040 | 3.409
f.orde be ot:g}l'y Secg:‘ds‘lw : mportar?cee'g pr"?‘cr'l 8 400 | 3742 | 5550 | 3.622 | 5030 | 3.428 | 25040 | 3.423
tic - elm; t' ng. d° d;m.s ;SSOC""‘I wit 9 320 | 4497 | 5300 | 3605 | 5020 | 3.399 | 25020 | 3.418
m fucture and data Inadequacy, errors 10 280 | 5442 | 5500 | 3548 | 5020 | 3.415 | 25000 | 3.410
and lumping (in space and time) could havea
greater impact on simulation performance
than the applied optimisation effort (Gan and .
Biftu, 1996, Y eetal., 1996, Sorooshianetal., 4.0 , A
1993). These factors and the non-representa- )
tivenessof calibrationdatacoulda soprovide 38 |
an explanation why validation simulations . ) N
are invariably poorer that calibration & 3.6 </ = T
simulations, Table5 demonstratesthepoorer £ " 0= LS B = W=
validation results obtained in this study. — B MM%—%‘H
The results obtained here indicate that 8 3.4
significantly better pa_rameter iden_tificati_on 39 —o-CASEA -F—CASEB
and parameter correlations are obtained with ' —
the high optimisation effort unlike the simu- 30 & CASEC  —<~CASED |*_CASEA L]
|ation performance. The adequacy of optimi- .
sation should therefore depend on the task at C
hand and the quality and adequacy of avail- 1 2 3 4 5 6 7 8 *
able data. Without checking for this, thereis Run humber
always the likelihood that better modelling un numbe
would havebeen achieved. A manual calibra- ]
tion approach may not be effective to check o _ Figure 4 o
for calibration adequacy. For amodeller with Objective function values for four levels of optimisation
extensive experience with a specific model,
manual calibration could probably suffice for some applications.
However, even with automatic caibration, the method should TABLE 5
allow for varying levelsof optimisation effort. To accomplish this, AVERAGE SIMULATION PEREFORMANCES FOR FOUR
modifications may be required. The improvements to the tradi- LEVELS OF OPTIMISATION
tional GA presented and tested here, are more comprehensively
described by Ndiritu (1998). Case Validation
Conclusions and recommendations ce bias ade rme
Anassessment of theadequacy of rainfall-runoff model calibration A 0.8517 0.4139 0.458 0.2771
was done using four optimisation levels obtained from a global B 0.8492 0.422 0.4641 0.2793
optimisation method. Higher optimisation levels were found to C 0.8549 0.413 0.4529 0.3328
give better objective functions, better parameter identification, a D 0.8556 0.4117 0.4512 0.3413
more distinct detection of parameter interdependence and slightly o
better simulations in both calibration and validation. The seem- Case Calibration
ingly low effect of thelevel of optimisation on simulation perform- ce bias ade rme
ance was considered to result from inadeguacies of the model
structurea_nd d_ata_ Itisalso pO$i plethat themodel readily fitted the A 0.9692 -0.0183 0.1399 0.9298
dataresultingin an easy calibration problem and aconsequent low B 09757 | -00155 | 0.128 0.9249
significance of the optimisation effort. o C 09784 | -00092 | 01207 | 09149
It is proposed that checks on the adequacy of optimisation D 09791 | -00093 | 01201 | 09123
shouldbeanintegral part of rainfall-runoff modelling. Such checks
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Figure 5
Parameter identification for four levels of optimisation

should be guided by the specific purpose/s of the modelling. The
optimisation method should easily alow for an increase in the
optimisation effort if theneed arises. Multiplerandomly initialised
optimisations with global optimisation methods such as the im-
proved genetic a gorithm used in thisstudy or the shuffled complex
evolution (Duan et al., 1992) are reasonable choices for effective
calibration. In this study, an average of about 35 min was required
toimplement onecalibration consisting of about 5000 simulations
(case C of Table 3) using a 166 MHz 32 KB RAM Pentium.
Because the simulation times of some models could belarge (e.g.
15 CPU hours taken for the TOPOG_Y IELD model to simulate

324 |SSN 0378-4738 = Water SA Vol. 25 No. 3 July 1999

12 years at a daily time step on an IBM RS6000 model 320H,
(Vertessy etal., 1993)), research aimed at improving the efficiency
of global optimisation methods (e.g. Kuczera, 1997)) is a good
choice for the future.
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Parameter correlations for four levels of optimisation
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