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Introduction

The rainfall-runoff process is the component of the hydrological
cycle involving the time-space conversion of precipitation into
runoff on land. The process is very complex considering the large
number of  factors involved and their variability. Rainfall-runoff
models idealise the rainfall-runoff process to varying degrees and
in various forms. A plethora of rainfall-runoff models exist with
Wheater et al. (1993) putting the number into the hundreds. Some
of the applications of rainfall-runoff modelling include:

• Creating, extending or filling in missing runoff data for water
resources assessments

• Flood peak estimation  and flood forecasting
• Investigating the hydrological and water quality impacts of

land use and climate change on catchments
• Studying and modelling specific processes in the catchment

such as sedimentation.

A common mode of classification based on model complexity,
groups rainfall-runoff models into: empirical, conceptual and
process models (Grayson and Chiew, 1994, Wheater et al., 1993).
Empirical models mimic the rainfall-runoff process to a slight
degree while conceptual models mimic the processes more closely
by using interconnected storages and simple equations to represent
the water movement among them.

Empirical and conceptual rainfall-runoff models are not de-
signed to use parameters that are directly measurable in the field
and their parameters are usually obtained by calibration. Process
models, most of which are distributed, were initially designed and
intended to represent the physical processes closely enough to
enable the use of measurable parameters only. Inadequacy of data

and model imperfections have, however, been found to limit the
application of process models in this ‘ideal’ manner and process
model applications invariably include some form of calibration
(Refsgaard and Knudsen, 1996; Refsgaard, 1997; Western et al.,
1997; Demetriou and Panthakey, 1997).

Calibration is the determination of a parameter set that gives a
simulated hydrological or hydrochemical series that adequately
matches the observed series. It is fundamentally an iterative proc-
ess involving:

i) The simulation/s using (a) parameter set/s from the search
space to obtain the model performance/s.

ii) The determination of (a) parameter set/s that is/are likely to
perform better than that/those used in the previous simulation/
s; and simulation/s using the new parameter set/s.

iii) The repetition of step (ii) until a satisfactory performance is
obtained or until further improvements are negligible.

During calibration, the performance is quantified by an objective
function. Some commonly used coefficients to quantify the quality
of the simulated series are the coefficient of determination and the
bias. Graphical plots such as hydrograph and scatter plots are also
applied often. The three steps of the process could be undertaken
manually or automatically using an optimisation method. Effective
automatic methods are preferable to manual methods as they give
a better chance of obtaining superior parameter sets. However,
where a modeller is adequately experienced with a given model,
manual calibration could suffice. This publication deals with
automatic calibration methods.

While research on model calibration has been active for
decades, most of the studies have focused on the location of the
global optimum and/or the efficiency at which this is achieved
(Johnston and Pilgrim, 1976; Duan et al., 1992; Bates, 1994; Tana-
kamaru and Burges, 1996; Kuczera, 1997). Gan and Biftu (1996)
included the simulation performance in validation providing a
notable exception to this trend.
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In practical model calibrations, although global optimum loca-
tion is desirable, other issues such as the quality of the model
simulation could be more important. It is often found that a unique
global optimum parameter set does not exist because of parameter
correlations. The detection of parameter correlations therefore
becomes an integral component of parameter identification. An
adequate level of optimisation should therefore detect parameter
correlations precisely. This could be particularly important where
modifications to the structure of the rainfall-runoff model are being
considered or in model regionalisation studies. If significant pa-
rameter correlations exist, any parameter set that gives an objective
function value very close to the lower bound can be considered a
global optimum parameter set. The lower bound of the objective
function is the lowest value obtained from an adequate number of
randomly initialised optimisations.

This study was aimed at assessing the effect of the level of
optimisation on:

• Model simulation performance
• Parameter identification
• The detection of parameter correlations
• The capability to locate the global optimum.

The traditional split sample calibration-validation approach was
used. Four different optimisation levels were obtained by using two
formulations of the genetic algorithm (GA) method: the traditional
and an improved GA. With each formulation, different optimisation
parameters were used to achieve different levels of optimisation.
The MODHYDROLOG, a conceptual model applied extensively
in Australia (Chiew and McMahon, 1994) was applied in the
analysis using historical 16 year-long rainfall, potential evapo-
transpiration and runoff series’ from a South Australian catchment.

The traditional genetic algorithm

The GA method is a population-based optimisation method that
uses the concepts of natural selection and natural evolution as
hypothesised by Darwin in his theory of evolution. The GA
approach was initiated by Holland (1975) and has been used and
studied extensively since then. Goldberg (1989), Davis (1991) and
Bäck (1996) give comprehensive reviews of the GA. Rainfall-
runoff model calibration is an example of the global optimisation
problem that takes the form of Eq. (1). The decision variables x

i

(i=1 to n) for the calibration problem are the model parameters.
 f  is the objective function, which quantifies the extent of agree-
ment between the simulated series and the observed series.
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Following is a description of the tradi-
tional GA applied to the general form of
the global optimisation problem (Eq. (1)).
The main steps of the traditional GA are:
coding, simulation and selection, cross-
over, mutation and replacement.

Coding

A binary substring of bit length l is used to represent each decision
variable. Figure 1 illustrates a possible coding for a 6-parameter
problem using an l value of 5. The coding is commonly referred to
as a chromosome.

Figure 1
A chromosome for a parameter set

The lower limit of the search range pmin
i
 is represented by the

decoded integer 0 and the upper limit pmax
i
 by the decoded integer

2l-1. The actual value of the decision variable x
i
 is determined by

linear interpolation of its decoded integer value. As an example,
the decoded value of parameter x

2
 of Fig. 1 is 20 x1 + 21 x 0 + 22 x 1
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). A population of p chromosomes is

generated randomly in the search space where p is the population
size.

Computation of fitness and selection

The chromosomes are decoded, the x
i
 values obtained and

simulations done to obtain the objective function (f) values for each
individual of the population. Fitnesses are then computed using a
function that gives higher fitness for individuals with lower objec-
tive function values. Equation (11) in Section 5 gives an example
of such a function. The chromosomes (parents) to use for the
generation of new chromosomes (children) of the next generation
are selected in proportion to the fitness. Each individual is assigned
to a range of a magnitude directly proportional to its fitness. All the
ranges are proportioned such that they all together span from zero
to one. Two random numbers lying between zero and one are then
generated. The two individuals assigned to the ranges within which
the two random numbers lie are selected as a pair of parents. This
is repeated 0.5 x c x p times where c is the probability of crossover.
The probability of crossover is the proportion of individuals of the
current population that will be replaced by children to form the new
population.

Crossover and mutation and replacement

Taking n as the number of parameters, l x n gives the bit length of
each chromosome. A point is selected randomly in the range l x n,
and the codes of the pairs of parents are exchanged. This is repeated
for all the 0.5 x c x p pairs of parents. In the illustration of Fig. 2,
parents 1 and 2 are individuals of a 6-parameter problem in which
a 5 bit binary coding has been used. With a crossover point of say
15 obtained randomly within the range 1 to 29, the chromosomes
of the two children are as shown.

x1 x2 x3 x4 x5 x6

00010 10101 11101 01010 10100 01110

Chromosome for parent 1: 000111000101010 ↓↓↓↓↓ 101000110010101
Chromosome for parent 2: 010100011100001 ↓↓↓↓↓ 101010100000110
Chromosome for child 1: 000111000101010 ↓↓↓↓↓ 101010100000110
Chromosome for child 2: 010100011100001 ↓↓↓↓↓ 101000110010101

Figure 2
An illustration of crossover
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To implement mutation, a small proportion of the bits of the
children are changed (1 becomes 0 and 0 becomes 1). The propor-
tion of the bits to change is referred to as the probability of mutation.
If m is the probability of mutation, then m x n x l x p randomly
selected bits are changed.

The 0.5 x c x p pairs of children are then used to replace c x p
randomly selected individuals of the initial population. This gives
the new population.

Selection gives fitter individuals a better chance of creating
children. Crossover helps to obtain more useful combinations of
the useful ‘traits’ within the fitter individuals and mutation helps to
generate new ‘genetic material’ leading the search to new regions
of the search space. Fitter individuals are thus obtained and the
population on the whole also becomes fitter as optimisation pro-
ceeds. The steps “Computation of fitness and selection” and
“Crossover and mutation and replacement” are repeated until a
designated termination criterion is met. This could be set at the
maximum number of simulations or generations, the minimum
improvement of the best performance in successive generations, or
the known global optimum.

The traditional GA is direct and population-based and is
therefore expected to work effectively on rough response surfaces
and on problems with multiple optima. However, studies with the
traditional GA have shown that it is ineffective in obtaining the
global optimum (Wang et al., 1995, Tanakamaru and Burges, 1996,
Kuczera, 1997). This is attributed to two features. Firstly, the
inability to fine-tune as the traditional GA searches only in a fixed
grid of the search space. Secondly, no explicit approach for leading
the search into several regions of attraction exists. The search
therefore converges into a single region of attraction, which may
contain a local and not the global optimum. Ndiritu (1998) devel-
oped approaches to overcome the two limitations. These consist of
three procedures: Fine-tuning, hill-climbing and the use of inde-
pendent subpopulation searches coupled with shuffling. The im-
proved GA was found to effectively locate the global optima of a
rainfall-runoff model calibration and the Griewank function, a hard
theoretical problem (Ndiritu and Daniell, 1997).

The improved genetic algorithm

Fine-tuning

Fine-tuning is achieved through the gradual reduction and shifting
of the search range. After every specified number of generations
denoted as s1, the locations of the parameters of the best performing
individuals in a specified number of successive previous genera-
tions denoted as s2 are checked. If the values are within a small
portion of the search space, then the search range is reduced and
centralised about the parameter value of the best individual of the
current generation. This gives a finer grid and a more concentrated
search. Equations (2) to (5) give the fine-tuning strategy.

After every s1 generations and for all dimensions  i = 1,2, .... , n,
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 are the search range limits before fine-tuning.
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 the search range limits after fine-tuning.

After a series of trials, the following values of the fine-tuning
parameters were selected: 5, 5, 0.4 and 0.5 for s1, s2, r1

min
 and

r1
max

 respectively.

Hill-climbing

Hill-climbing consists of range-shifting towards regions of the
search space that are more promising and also serves to prevent
premature convergence when the fine-tuning routine is in opera-
tion. Hill-climbing is implemented after every given number of
generations denoted as s3. The strategy is described in Eq. (6) to (8)
using the same notation as for fine-tuning. The shift sh

i,g
(pmax

i
-

pmin
i
) in Eq. (7) and (8) is the deviation from the middle of the

current search range, of the mean of the values of the best individu-
als in the last s4 generations (including the current one). A value of
5 was found reasonable and used for both s3 and s4.

After every s3 generations and for all dimensions i = 1,2, ...., n,

    (6)

    (7)

    (8)

Search range-shifting in fine-tuning and hill-climbing enables the
GA to search beyond the initially prescribed search space – a
feature that could be particularly useful when dealing with unfamil-
iar problems and/or data. It is, however, appropriate that the search
should be prevented from straying into unrealistic regions. Two
search spaces are therefore specified. One is the initial search space
[Xmin

1i
 - Xmax

1i
] which allows for the optimiser’s intuition and

experience but which the search can go beyond. The other is the
limiting search space [XLmin

i
 - XLmax

i
], which allows for the input

of the known constraints and beyond which the search is not
allowed.

Independent subpopulation searches and shuffling

The total population (of p individuals) is split  into n
s
 subpopulations

of size p
s
 each. Each subpopulation searches independently to an

optimum. The subpopulations are then shuffled as follows:

The population is ranked in order of performance to form a matrix
[ch(i),  i=1,2, ......, p ] where ch(1) is the best performing and ch(p)
the worst performing individual. The individuals are then allocated
to the subpopulations using Eq. (9) to effect the shuffling procedure
of Duan et al. (1992):

sch(i, j) = ch(i + p
s
(j - 1))     (9)
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Rainfall-runoff model and data

The MODHYDROLOG, a daily rainfall-runoff model used exten-
sively in Australia was chosen for the simulation of monthly flows.
Sixteen years of daily rainfall, potential evapotranspiration and
runoff data spanning 1970 to 1985 from the 27 km2 Scott Creek
catchment located in South Australia was used. The grass-covered
catchment is located 20 km south of Adelaide, and has a predomi-
nantly duplex soil type. For the study period, the mean annual
rainfall, potential evapotranspiration and runoff values were
950 mm, 1 080 mm and 130 mm respectively. The data were split
into two samples of eight years each: 1970-77 and 1978-85.

Figure 3 presents the basic structure of MODHYDROLOG and
the equations governing water flow. Table 1 presents brief descrip-
tions of the model parameters while Table 2 gives the parameter
settings and ranges applied for this study. Nine of the 19 parameters
of MODHYDROLOG were set to constant values provided by
Chiew and McMahon (1994) and the other ten were optimised.
Chiew and McMahon (1994) provide more information on the
MODHYDROLOG. An objective function that uses the square
roots of the observed and predicted values given as Eq. (10) was
applied in the calibrations.

  (10)

where:
 N is the length of data;
arun

i
 is the observed discharge; and

run
i
 is the estimated discharge.

Methodology

Four different levels of optimisation denoted as case A to case D
were obtained by using the two GA formulations and varying the
optimisation parameters for each as shown in Table 3. Case A and
B used the traditional GA while case C and D used the improved
GA. These parameters were selected on the basis of experience and
trial runs. For all the optimisations, the bit length of parameter
substring l, probability of crossover, c, probability of mutation, m
used was 20, 1.0 and 0.05 respectively. Instead of the traditional
2-point crossover (Fig. 2), a 10-point crossover was applied. In this
crossover, the chromosome of a child is obtained from the chromo-
somes of the two parents with each contributing 5 sections.

Elitism, the process that maintains the best individual of the
current generation in the next one was also applied. Instead of the
traditional proportionate selection (Section 2.2), tournament selec-
tion was adopted. In tournament selection, individuals are selected
randomly from the population and the fittest one chosen as a parent.
The number of individuals from which the parent is selected is
referred to as the tournament size. A variable power equation form
of fitness scaling (Eq. (11)) was used.

  p   (g + 3000/3000)

sf
1
   =   ∑  f

1
     f

1
   (11)

 i=1  

where:
sf

i
 is the scaled fitness

 f
i
 the raw objective function value

g is the generation.

Parameter cheperf as applied in Eq. (12) and (13) specified the level
of convergence to be achieved before the termination of an
optimisation. Equation (12) was applied to populations (cases A

( )Minimize arun runi i
i

N
−∑

=

2

1

F Infiltration Function
D Depression Flow Function
S Soil Moisture Function
B Baseflow Function
L River Recharge Function
R Nonlinear Routing Function

RAIN = Rainfall
PET = Potential Evapotranspiration
INFIL = Lesser of { COEFF exp(-SQ.SMS/SMSC),

RAIN-INSC}
RUN = RAIN-INSC-INFIL
TRAP = (DSC-ADS.ARGD) exp(-MD.DSC/RUN)
SRUN = RUN-TRAP
QINTF = SUB.(SMS/SMSC).INFIL
GWRE = CRAK.(SMS/SMSC).(INFIL-QINTF)
SMF = INFIL-QINTF-GWRE
ET = lesser of {EM.(SMS/SMSC), PET}
FLOW = K1. GW +K2.[1-exp(-K3  GW )
SEEP = VCOND.(GW-DLEV)

Figure 3
Model structure of MODHYDROLOG

(adapted from Chiew and McMahon, 1994)

where:
sch(i,j) is the j th (j = 1,2, ..., p

s
) individual in the i th

(i = 1,2, ..., n
s
) subpopulation.

The least and highest parameter values of each subpopulation give
the initial search space [Xmin

1i
 - Xmax

1i
] for the next set of

optimisations for the subpopulations. Each set of subpopulation
optimisations is referred to as an epoch. The first subpopulation
retains all the p

s
 individuals from the previous epoch and uses them

as the initial population. The initial individuals for the other
subpopulations are generated randomly.
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TABLE 1
PARAMETERS OF THE MODHYDROLOG MODEL

Parameter Description

ADS Fraction of total area which is depressional
CO Routing coefficient
COEFF Maximum infiltration loss parameter
CRAK Constant of proportionality in the determination of groundwater recharge
DLEV Parameter used in deep seepage equation
DSC Depression storage capacity
EM Maximum plant-controlled rate of evapotranspiration
INSC Interception store capacity
K1 Constant of proportionality in linear part of aquifer-stream flow equation
K2 Constant of proportionality in exponential part of aquifer-stream flow equation
K3 Exponent in exponential part of aquifer-stream flow equation
LOCATE Parameter to fix the origin of the seasonal cycle of COEFF, CRAK and SUB
MD Exponent in depression flow equation
POWER Routing exponent
SEAS Parameter to fix the amplitude in the seasonal fluctuation of COEFF, CRAK and SUB
SMSC Soil moisture store capacity
SQ Exponent in infiltration capacity equation
SUB Constant of proportionality in the calculation of interflow
VCOND Constant of proportionality in deep seepage equation

TABLE 2
PARAMETER SETTINGS AND RANGES FOR MONTHLY SIMULATIONS WITH THE

MODHYDROLOG MODEL

Parameter Set value Parameter            Initial parameter ranges        Parameter range limits
              [Xmin1i  -  Xmax1i]         [XLmini  - XLmaxi]

ADS 0 INSC 1 2 0.5 6
MD 1 COEFF 90 190 20 400
DSC 0 SQ 1 5 0 10
LOCATE 1 SUB 0.1 0.3 0 1
SEAS 0 CRAK 0.1 0.3 0 2
POWER 0 SMSC 130 230 20 400
K2 0 EM 7 13 5 20
K3 0 CO 10 30 1 50
DLEV -0.1 K1 0.02 0.06 0 1

VCOND 0.05 0.15 0 0.5

TABLE 3
OPTIMISATION PARAMETER SETTINGS FOR THE FOUR LEVELS OF OPTIMISATION

Optimisation parameter Symbol                 Value for case

A B C D

Population size p 20 50 50 200
Subpopulation size p

s
20 50 10 20

Number of subpopulations n
s

1 1 5 10
Maximum number of function evaluations Ev

max
5 000 5 000* 5 000* 25 000*

Number of crossover positions n
cross

10 10 10 10
Tournament size t

o
6 15 3 6

Maximum number of epochs ep
max

1 1 50 50

*  The epoch at which maximum function evaluations reached is allowed to complete.
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and B) or subpopulations (case C and D) while Eq. (13) was applied
to epochs (cases C and D):

  (12)

  (13)
where:

obf
i
  is the objective function of the best individual in

generation i
obf

pep
 and obf

cep
 are the best objective function values of the

previous and the current epoch respectively.

Cases B and C were also used to evaluate the significance of the GA
modifications. It was observed that a single run of case B was
reaching convergence at around 800 function evaluations while
case C was converging at about 5 000 evaluations. To enable a
reasonable comparison of case B and case C, additional runs were
made for case B until and including the run at which 5 000 eva-
luations were exceeded. The optimisation among all the runs giving
the least objective function value was then taken as the result of an
optimisation of case B. For cases C and D, the epoch in which 5 000
and 25 000 simulations were respectively attained was allowed to
complete and the search then terminated. The actual number of
function evaluations therefore exceeded these values by small
amounts.

Split sample calibration-validation was applied. The 1970-77
data series was used for calibration and the 1978-85 series for
validation. Ten runs with different random initialisations were
made with each of the four cases. This allowed an evaluation of the
consistency of the objective function, the consistency of para-
meters from different runs and an evaluation of parameter correla-
tions. To quantify runoff simulation performance, the following
four coefficients were applied:

• The coefficient of efficiency (ce), a measure of the variance
• The bias (bias), a measure of the ability to predict the volume

of discharge
• The absolute deviation (ade), a measure of the average depar-

ture of the predictions at every time step
• A residual mass curve coefficient (rmcc), a measure of system-

atic errors in the simulations.

Equation (14) to (17) describe the coefficients:
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tm

rmcc = 1 - ∑  (rmsim
t
 - rmact

t
) / rmact

t
   (17)

     t=1

where:
arun

i
 is the historical discharge,

run
i
 the estimated discharge, and

arun the mean of the historical flows.

In Eq. (17), rmsim
t
 and rmact

t
 are respectively, the residual mass

curve values for the simulated and actual flow at time t. The
coefficient of efficiency (ce), is commonly used (Nash and Sutcliffe,
1970; Wang et al., 1995; Hughes, 1995; Yapo et al., 1996; Gan and
Biftu, 1996; Refsgaard and Knudsen, 1996; Franchini et al., 1996).
The bias has also been used by Sorooshian et al. (1993), Yapo et al.
(1996), Chiew and McMahon (1994), Gan and Biftu (1996) and
Refsgaard and Knudsen (1996). Aitken (1973) used a residual mass
curve coefficient for the quantification of systematic errors in
simulated flows. The coefficient of efficiency and the residual mass
curve coefficient take on  maximum values of unity in the case of
a perfect fit. The bias and absolute deviation take perfect fit values
of zero. The absolute deviation (ade) takes on a minimum value of
zero but the other coefficients could take negative values.

Results and discussion

Table 4 gives the objective function values (obf) in mm and the
corresponding number of function evaluations (eval) obtained.
Figure 4 compares the objective function values graphically. It is
observed from both Table 4 and Fig. 4 that better objective function
values were obtained with higher optimisation effort. The differ-
ence between case C and D, however, seems minimal except for
one of the runs of case C which gave an obf of 3.494 mm. Case C
indeed gave the overall least objective function value (3.399 mm).
Based on the objective function values, the ten runs of case D and
9 runs of case C were considered to have practically located the
global optimum.

Although cases B and C used about the same number of
function evaluations (approximately 5 000), better objective func-
tion values were obtained with case C indicating that the improved
GA performed better.

Figure 5 shows the relative locations of parameters from the ten
calibrations and serves to assess parameter identification. The
scaled values were obtained as (xb

i
o – XLmin

i
)/(XLmax

i
 – XLmin

i
)

where xb
i
o is the optimised value of parameter i. These plots show

a better identification with cases C and D. Case A gives the poorest
parameter consistency.

Although very close objective function values were obtained
for the ten runs of case D (Table 4), a unique parameter set was not
obtained (Fig. 5 case D). This observation is not unusual (see for
instance Sorooshian et al., 1993; Tanakamaru and Burges, 1996)
and is caused by parameter interdependence. An analysis of param-
eter interdependence revealed high correlation coefficients be-
tween parameter SQ and COEFF and between parameter CRAK
and SUB. These observations conformed with the MOD-
HYDROLOG model structure. Parameters SQ and COEFF are
both used in the infiltration rate function while CRAK and SUB
determine the proportioning of the infiltrated water into interflow
and groundwater recharge. Figure 6 presents the correlations for
the two pairs of parameters where R2 denotes the correlation
coefficient and SE the standard error of observations. Cases C and
D gave better correlations than cases A and B with case A giving
the poorest correlations.

The average simulation performance coefficients obtained for
the ten runs of each optimisation level are given in Table 5. It is
evident that the simulation performance generally improved with
optimisation effort. For the validations, the differences among the
four levels were, however, not considerable except with the re-
sidual mass curve coefficient (rmcc). The calibration values are
included for completeness. In calibration, the most notable obser-
vation was the considerably lower bias values for cases C and D.
The higher rmcc values for cases A and B in calibration were not
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TABLE 4
OBJECTIVE FUNCTION VALUES AND NUMBER OF FUNCTION EVALUATIONS

FOR THE FOUR OPTIMISATION CASES (A TO D)

Run              Case A                 Case B                 Case C               Case D

eval obf eval obf eval obf eval obf

1 320 3.620 5 300 3.548 5 040 3.425 25 040 3.418
2 260 3.827 5 050 3.568 5 030 3.402 25 040 3.426
3 360 3.664 5 400 3.628 5 010 3.395 25 080 3.407
4 380 3.985 5 350 3.599 5 030 3.415 25 040 3.403
5 320 3.847 5 350 3.583 5 020 3.494 25 020 3.418
6 240 3.684 5 250 3.552 5 030 3.422 25 020 3.405
7 300 3.677 5 350 3.534 5 030 3.407 25 040 3.409
8 400 3.742 5 550 3.622 5 030 3.428 25 040 3.423
9 320 4.497 5 300 3.605 5 020 3.399 25 020 3.418
10 280 5.442 5 500 3.548 5 020 3.415 25 000 3.410

TABLE 5
AVERAGE SIMULATION PERFORMANCES FOR FOUR

LEVELS OF OPTIMISATION

Case                        Validation

ce bias ade rmc

A 0.8517 0.4139 0.458 0.2771
B 0.8492 0.422 0.4641 0.2793
C 0.8549 0.413 0.4529 0.3328
D 0.8556 0.4117 0.4512 0.3413

Case                      Calibration

ce bias ade rmc

A 0.9692 -0.0183 0.1399 0.9298
B 0.9757 -0.0155 0.128 0.9249
C 0.9784 -0.0092 0.1207 0.9149
D 0.9791 -0.0093 0.1201 0.9123

Figure 4
Objective function values for four levels of optimisation

expected but are not considered significant. A
possible explanation for this is the difference
in the variations quantified by the objective
function and those quantified by the rmcc.
Minimising the objective function may not
always minimise the rmcc. Plots of the indi-
vidual coefficients (ce, bias, ade and rmcc)
indicated a lower variability for the higher
optimisation levels.

The simulation performance results indi-
cate that location of the global optimum may
not necessarily give simulations significantly
superior to those obtained with lower levels
of optimisation - especially in validation. The
global optimum search could at times there-
fore be of only secondary importance in prac-
tical modelling. Problems associated with
model structure and data inadequacy, errors
and lumping (in space and time) could have a
greater impact on simulation performance
than the applied optimisation effort (Gan and
Biftu, 1996, Ye et al., 1996, Sorooshian et al.,
1993). These factors and the non-representa-
tiveness of calibration data could also provide
an explanation why validation simulations
are invariably poorer that calibration
simulations. Table 5 demonstrates the poorer
validation results obtained in this study.

The results obtained here indicate that
significantly better parameter identification
and parameter correlations are obtained with
the high optimisation effort unlike the simu-
lation performance. The adequacy of optimi-
sation should therefore depend on the task at
hand and the quality and adequacy of avail-
able data. Without checking for this, there is
always the likelihood that better modelling
would have been achieved. A manual calibra-
tion approach may not be effective to check
for calibration adequacy. For a modeller with
extensive experience with a specific model,
manual calibration could probably suffice for some applications.
However, even with automatic calibration, the method should
allow for varying levels of optimisation effort. To accomplish this,
modifications may be required. The improvements to the tradi-
tional GA presented and tested here, are more comprehensively
described by Ndiritu (1998).

Conclusions and recommendations

An assessment of the adequacy of rainfall-runoff model calibration
was done using four optimisation levels obtained from a global
optimisation method. Higher optimisation levels were found to
give better objective functions, better parameter identification, a
more distinct detection of parameter interdependence and slightly
better simulations in both calibration and validation. The seem-
ingly low effect of the level of optimisation on simulation perform-
ance was considered to result from inadequacies of the model
structure and data. It is also possible that the model readily fitted the
data resulting in an easy calibration problem and a consequent low
significance of the optimisation effort.

It is proposed that checks on the adequacy of optimisation
should be an integral part of rainfall-runoff modelling. Such checks
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12 years at a daily time step on an IBM RS6000 model 320H,
(Vertessy et al., 1993)), research aimed at improving the efficiency
of global optimisation methods (e.g. Kuczera, 1997)) is a good
choice for the future.

Acknowledgments

FHS Chiew and T A McMahon of the Centre Data for Environmen-
tal Applied Hydrology, University of Melbourne provided a  hy-
drological model and data. This is gratefully acknowledged. The
authors also express thanks to the Australian Agency for Interna-
tional Development (AusAID), the sponsors of one of the authors
at the University of Adelaide where a considerable part of this work
was conducted.

References

AITKEN AP (1973) Assessing systematic errors in rainfall-runoff
models.  J. Hydrol. 20 121-136.

BÄCK T (1996) Evolutionary Algorithms in Theory and Practice.
Oxford Univ. Press, New York. 314 pp.

BATES BC (1994) Calibration of the SFB model using a simulated
annealing approach. Proc. Int. Hydrol. and Water Resour. Symp.,
Adelaide, Vol.3, 1-6.

CHIEW FHS and McMAHON TA (1994) Application of the daily rainfall-
runoff model MODHYDROLOG to 28 Australian Catchments.
J. Hydrol. 153 383-416.

DAVIS L (ed.) (1991) Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York.

DEMETRIOU C and PANTHAKEY J F (1997) Integrated hydrogeological
model development for the Wakool irrigation district. Proc. MODSIM
97, Int. Congr. on Modelling and Simulation, Modelling and Simula-
tion Soc. of Aust., Hobart, Vol. 1 323-328.

DUAN Q, SOROOSHIAN S and GUPTA V (1992) Effective and efficient
global optimization for conceptual rainfall-runoff models. Water Resour.
Res. 28(4) 1015-1031.

FRANCHINI M, WENDLING J, OBLED C and TODINI E (1996)
Physical interpretation and sensitivity analysis of the TOPMODEL.
J. Hydrol. 175 293-338.

GAN TY and BIFTU GF (1996) Automatic calibration of rainfall-runoff
models: Optimization algorithms, catchment conditions, and model
structure. Water Resour. Res. 32(12) 3513-3524.

GOLDBERG DE (1989) Genetic Algorithms in Search, Optimization and
Machine Learning.  Addison Wesley.

GRAYSON RB and CHIEW FHS (1994) An approach to model selection.
Proc. Int. Hydrol. and Water Resour. Symp., Adelaide, Vol.1 507-512.

HOLLAND JH (1975) Adaptation in Natural and Artificial Systems. Univ.
of Michigan Press, Arbor. 183 pp.

HUGHES DA (1995) Monthly rainfall-runoff models applied to arid
and semi-arid catchments for water resource estimation purposes.
Hydrol. Sci. 40 (6) 751-769.

JOHNSTON PR and PILGRIM DH (1976) Parameter optimization for
watershed models. Water Resour. Res. 12(3) 477-486.

KUCZERA G (1997) Efficient subspace probabilistic parameter optimiza-
tion for catchment models. Water Resour. Res. 33 (1) 177-185.

NASH JE and SUTCLIFFE JV (1970) River flow forecasting through
conceptual models Part I - A discussion of principles. J. Hydrol. 10
282-290.

NDIRITU JG and DANIELL TM (1997) An improved genetic algorithm
for rainfall-runoff model calibration and function optimization.
Proc. MODSIM 97, Int. Congr. on Modelling and Simulation, Model-
ling and Simulation Soc. of Aust., Hobart, Vol. 4 1689-1694.

NDIRITU JG (1998) An Improved Genetic Algorithm for Rainfall-Runoff
Model Calibration. PhD Thesis, Univ. of Adelaide, Australia.

REFSGAARD JC and KNUDSEN J (1996) Operational validation and
intercomparison of different types of hydrological models. Water
Resour. Res. 32 (7) 2189-2202.

REFSGAARD JC (1997) Parameterisation, calibration and validation of
distributed hydrological models, J. Hydrol. 198 69-97.

0

0.2

0.4

0.6

0.8

1
Sc

al
ed

 V
al

ue

CASE A

0

0.2

0.4

0.6

0.8

1

Sc
al

ed
 V

al
ue

CASE B

0

0.2

0.4

0.6

0.8

1

Sc
al

ed
 V

al
ue

CASE C

0

0.2

0.4

0.6

0.8

1

Sc
al

ed
 V

al
ue

CASE D

Figure 5
Parameter identification for four levels of optimisation

should be guided by the specific purpose/s of the modelling. The
optimisation method should easily allow for an increase in the
optimisation effort if the need arises. Multiple randomly initialised
optimisations with global optimisation methods such as the im-
proved genetic algorithm used in this study or the shuffled complex
evolution (Duan et al., 1992) are reasonable choices for effective
calibration. In this study, an average of about 35 min was required
to implement one calibration consisting of about 5 000 simulations
(case C of Table 3) using a 166 MHz 32 KB RAM Pentium.
Because the simulation times of some models could be large (e.g.
15 CPU hours taken for the TOPOG_YIELD model to simulate
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Parameter correlations for four levels of optimisation
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