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Abbreviations

AMA acetoclastic methanogenic activity
AMGPR average methane gas production rate
BA bicarbonate alkalinity
EBHRT empty bed hydraulic retention time
F final
I initial
HOM hydrogen oxidising methanogens
NHOM non-hydrogen oxidising methanogens
OLR organic loading rate
SMA specific methanogenic activity
TMA total methanogenic activity
UAF upflow anaerobic filter
VFA volatile fatty acids
VSS volatile suspended solids

Introduction

Several anaerobic process variants having specific biomass reten-
tion mechanisms are available for field application. Laboratory-,
pilot- and full-scale studies have made varied claims regarding
applicability and performance of these process variants (Henze and
Harremoes, 1983; Stronach et al., 1986; Hickey and Goodwin,
1989; 1991; Lettinga et al., 1980; Pol and Lettinga, 1986). Main-
tenance of sufficient methanogenic populations in the system is
critical for stable performance. Methanogenic species types and
their relative population levels in reactor biomass depend on
wastewater characteristics as well as operational/environmental
conditions maintained (Novaes, 1986). Any imposed stress (inten-
tional or otherwise) may lead to a change in species types and their
relative population levels which is ultimately reflected in the
reactor performance (Harper and Pohland, 1986). The reactor
performance is usually evaluated in terms of process efficiency and

stability through estimation of organic matter removal, VFA
levels, quantity and composition of biogas produced, etc. How-
ever, little effort has been made to assess reactor biomass in terms
of relative population levels of methanogenic species under varied
operational/environmental conditions.

Counts of methanogens and non-methanogens in reactor
biomass have been made by several investigators (Kotze et al.,
1969; Hobson and Shaw, 1974; Zeikus, 1980; Gregori et al., 1979;
Novaes et al., 1984; Agrawal et al., 1997). These efforts led to the
development of well-established laboratory techniques (Ranade
and Gadre, 1988). However, these techniques require a high level
of skill, advanced equipment, and costly and specific growth media
which restrict its application at the plant site. SMA tests on
anaerobic sludges (biomass) have been gaining importance. Ini-
tially, these tests were mainly used to select an adapted sludge as
inoculum (James et al., 1990) but now these tests can also be used
for many other purposes such as to:

• Evaluate the behaviour of sludge under the effect of potentially
inhibitory compounds (Harada et al., 1994; Perle et al., 1995)

• Establish the degree of degradability of various substances
(Stewart et al., 1995)

• Follow the changes in sludge activities due to a possible build-
up of inert materials

• Estimate maximum applicable loading rate to a certain sludge
(Ince et al., 1995)

• Evaluate batch kinetic parameters, etc.

A number of methods have been proposed for the estimation of
maximum methanogenic activity. The summary of experimental
conditions is presented in Table 1. Some of these methods are quite
simple (Valcke and Verstraete, 1983; De Jong, 1986; Field et al.,
1988; Soto et al., 1993) but the sample volume needed is too high
(500 m� or larger). Several solutions were proposed to reduce the
working volume and to automate the monitoring process (Owen et
al., 1979; Shelton and Tiedje, 1984; Dolfing, 1985; Bonastre et al.,
1987;  Concannon et al., 1988; James et al., 1990; Grotenhuis et al.,
1991; Rintala and Lepisto, 1992; Soto et al., 1993). Very small
working volumes (30 to 125 m�) lead to smaller amounts of
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methane gas production. It necessitates careful measurements of
methane gas with sophisticated techniques and hence its applica-
tion at the plant site becomes even more restricted.

Dolfing and Bloemen (1985) proposed activity measurements
as a tool to monitor the microbial composition of methanogenic
environments using H

2
, formate, acetate and propionate as test

substrates. The anaerobic biomass was obtained from a digester
and maintained for three months on synthetic growth substrates
comprising a mixture of acetate and propionate (50% each on COD
basis) and mainly sucrose (95% on COD basis and the rest 5% on
COD basis augmented by acetate and propionate). Dolfing and
Bloemen (1985) observed 30 to 70% reduction in methanogenic
activity of biomass maintained mainly on sucrose compared to that
maintained on acetate and propionate. It is not clear from this study
whether these reductions were due to experimental limitations
(such as lack of acclimatisation of test biomass, short monitoring
period for methane production, etc.) or otherwise.

This paper presents the application of a simple methanogenic
activity test procedure to monitor reactor biomass in terms of
relative population levels of methanogenic species by using two
different test substrates. The results so obtained are correlated with
the performance of a laboratory-scale reactor.

Experimental

A simple methanogenic activity test procedure as proposed by Isa
et al. (1993) was adopted with suitable modifications to suit the
requirements of this study. The experimental set-up is shown in
Fig. 1. A known amount of sludge (VSS ≈ 1 to 2 g/�) was transferred
into a 500 m� serum bottle. Tap water (purged of oxygen with

nitrogen gas) was added up to the 500 m� mark. An appropriate
quantity of substrate was added to the serum bottle so as to obtain
initial COD levels in the range of 2 to 2.5 g/�. Nutrients were not
added with an aim to restrict growth of biomass during the test
period (Dolfing and Bloemen, 1985; Soto et al., 1993). Methane
gas production was measured by means of the liquid displacement
method at a shorter time interval (0.5 to 2 h) in the first 12 h and at
longer time intervals (4 h or more) afterwards up to 48 h of feeding.
Contents of the serum bottle were mixed by swirling manually after
every gas measurement. When gas production for the first feeding
had been recorded, supernatant of the serum bottle was decanted.
Tap water (purged of oxygen with nitrogen gas) was immediately
poured into the bottle again and the volume was again made up to
the 500 m� mark. The same quantity of substrate was fed as in the
first feeding and the bottle was capped and connected to a liquid
displacement system. Gas production was recorded. This consti-
tuted the second feeding. Likewise the procedure was repeated for
the third feeding as suggested (De Zeeuw, 1984; Alphenaar et al.,
1993; Soto et al., 1993; Isa et al., 1993). The entire test was
conducted at 35±1°C in a temperature-controlled cabin. On com-
pletion of the third feeding, the amount of sludge (VSS) remaining
in the serum bottle was determined. This VSS and slope of the
linear portion of cumulative methane production rate in the third
feeding were used to calculate the methanogenic activity. COD and
VSS were determined as per Standard Methods (1989).

The test sludge (biomass) for this study was obtained from a
bench-scale model of the UAF. The UAF was developed and
maintained on synthetic feed at 35±1oC and operated at three
distinct combinations of EBHRT and influent COD concentration
keeping a fixed OLR ≈ 5 kg COD/m3·d. The test sludge was

TABLE 1
 SUMMARY OF EXPERIMENTAL CONDITIONS FOR MAXIMUM METHANOGENIC ACTIVITY ESTIMATION

Volume Inoculum Substrate type Monitoring Reference
(useful volume) size (quantity, g/�) method/
  m� g VSS/� technique

50 (30) 10% vol. 1 (2.7) S, M Van den Berg (1977)
125 (100) 10% vol. 1, 2 SD Owen et al. (1979)
2 000 (1 000) 5 1 (variable) AMF Valcke and Verstraete (1983)
160 (125) 10% vol. (0.05 g TOC/�) PT+M Shelton and Tiedje (1984)
130 (50) 0.8-8 1, 1+2, H

2
/CO

2
PLS (M) Dolfing (1985)

---- (5 000) 1.5-3 1+2+3 (0.6 each) AMF De Jong (1986)
120 (50) 100% vol. 1 (1.5)+2 (0.5) PT Bonastre et al. (1987)
20 (10) 3-4 1, 2 (1.85) PT Concannon et al. (1988)
1 160 (500) 0.27-5.12 1 (0.12-0.6) PLS (M) Rinzema (1988)
500-1 500 (>90%)  1-5 1+2+3 (0.6 each) AMF Field et al. (1988)
500 (450)   <1 1 (3-4) MM Chiang and Dague (1989)
45 (35) 2.5 1 (0.6-5) WR James et al. (1990)
160 (80) 0.2-0.7 g 1, 2 (1.25-4.5 g COD/�) 1, 2 Grotenhuis et al. (1991)
118 (65) 10-15 m� VFA (1.85 g COD/�) SD+M Rintala and Lepisto (1992)
600 (500) 1-2 1 (2.5 g COD/�) AMF Isa et al. (1993)
600 (500)  1.4-1.6 VFA (3 g COD/�) AMF Alphenaar et al. (1993)
2 000 (1 500) 1.26 1 (2)+2 (0.5)+3 (0.5) ASD+M Soto et al. (1993)
126 (100) 1.26 1 (2)+2 (0.5)+3 (0.5) AMF Soto et al. (1993)
126 (50) 1.75 1 (2) AMF Soto et al. (1993)

AMF = alkaline mariotte flask ASD = acid solution displacement M = % methane
MM = manometric measure PLS = pressure lock syringe PT = Pressure transducer
S = substrate SD = syringe displacement WR = Warburg respirometer
1 = HAc (acetic acid) 2 = HPr (propionic acid) 3 = HnBu (n-butyric acid)
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withdrawn from the feed inlet point under hydraulic pressure. The
synthetic feed was prepared from jaggery, known as Indian sugar
or gur, which is a simple energy-rich substrate. The characteristics
of jaggery are presented in Table 2. Further details are available
elsewhere (Jawed, 1996).

The activity tests were run in two similar set-ups using two
different substrates. In one set-up, acetic acid neutralised with
approximately 6N NaOH (neutralised acetic acid) was used as
substrate for the estimation of AMA whereas jaggery (substrate on
which test biomass was grown and maintained in the UAF) was
used as substrate for TMA estimation in the other set-up. One gram
NaHCO

3
 was also added along with jaggery to buffer the serum

bottle contents to near neutral pH conditions during the TMA test.

Results and discussion

Test procedure

In order to monitor biomass composition of anaerobic sludge
through the methanogenic activity test, the methane production
potential of the test biomass is measured under unlimited substrate
and optimal environmental conditions. There are essentially two
classes of methanogens namely HOMs and NHOMs. The latter
(NHOMs) are substrate-specific and cleave the acetic acid mol-
ecule to produce methane. As such, the methanogenic activity test
with neutralised acetic acid or acetate as sole substrate reflects
activity of NHOMs, also known as acetoclastic methanogens, and
it has been referred to as the AMA test. Jaggery, which was the main
source of carbon for the test biomass in the UAF, was also used as
a substrate in a separate test. In this, both HOMs and NHOMs
contribute to methane production and therefore it is referred to as
the TMA test.

In an effort to monitor reactor biomass in terms of relative
population levels of HOM and NHOM, AMA and TMA tests were
carried out on sludge (biomass) samples withdrawn from the UAF
operated using three distinct combinations of EBHRT and influent
COD concentration and grouped as Region I : Influent COD  ≈ 5
g/�, EBHRT ≈ 1 d; Region II : Influent COD ≈10 g/�, EBHRT
≈2 d; and Region III : Influent COD ≈20 g/�, EBHRT ≈ 4 d. The
AMA and TMA test results for the sludge biomass withdrawn
towards the end of each operating region are presented in Fig. 2a
and 2b respectively. It can be observed from AMA tests that a very
small amount of methane production takes place in the first 20 h of
feeding whereas in the case of TMA tests, almost 50% of cumula-
tive methane production takes place in the first 15 h out of 48 h of
monitoring after  feeding. Instantaneous addition of acetic acid or
acetate as substrate in the AMA test, as against formation of the
same by acid formers from the substrate, jaggery, in the TMA test,
may retard substrate utilisation and hence, the methane production
rate by acetoclastic methanogens. Aguilar et al. (1995) have also
reported that sludge acclimatised to the presence of VFA arising
from substrate degradation could use them better than un-acclima-
tised sludge. In the present study, even after acclimatising the test
biomass by three feedings of neutralised acetic acid, the methane
production rate did not improve during the first 15 h of feeding.
This may be the reason for the observed reduction in activity values
by Dolfing and Bloemen (1985) in the case of test biomass
maintained and grown on mainly sucrose substrate.

Direct addition of jaggery to serum bottles in the TMA test
leads to complete conversion to acetate, CO

2
 and H

2
 within the first

2 h with a large and rapid increase in concentration of acetate and
H

2
 (Mosey and Fernandes, 1989). Availability of H

2
/CO

2
 (substrate

for HOM) and acetate (substrate for NHOM), both HOMs and
NHOMs contribute to methane production during the initial period

Figure 1
Schematics of methanogenic activity test set-up

1. Serum Bottle
2. Test Biomass
3. Reaction Mixture
4. CO2 Scrubber (11.2% w/v KOH Solution +

Thymol Blue Indicator)
5. Rubber Tubing
6. Pinch-Cock
7. Hypodermic Needle
8. Conical Funnel
9. Displaced Liquid
10. Liquid Displacement System

TABLE 2
CHARACTERISTICS OF JAGGERY

(SOURCE: GEHLAWAT, 1996)

Component           Per 100 g jaggery

Sucrose (g) 65-85
Reducing sugar (g) 5-15
Protein (g) 0.4
Fat (g) 0.1
Calcium (mg) 8
Phosphorus (mg) 3-4
Total mineral (g) 0.6-1
Moisture content (g) 3-8
Carotene (Vitamin A, µg) 280
Nicotinic acid (µg) 1
Thiamine (Vitamin B, µg) 20
Colour   Golden yellow

to brown
Energy (kcal) 383
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in the TMA test, while in the latter period, essentially NHOMs are
expected to contribute to methane production depending upon
acetate availability. However, methane production in the AMA test
is essentially by NHOMs as no substrate is available for HOMs. As
such, it can be stated that the specific methanogenic activity
computed from the initial methane production rate in the TMA test
reflects the methane production potential of both HOM and NHOM.
Hence, TMA is reported on the basis of the initial methane
production rate while AMA is reported on the basis of maximum
methane production rate after the initial lag phase.

Activity values

The summarised results of AMA and TMA tests are presented in
Table 3. The maximum activity for pure or enriched methanogenic
cultures is  ≈10 g COD/g VSS·d (Harper and Pohland, 1986), while
observed activity in industrial and laboratory digesters ranges
between 0.1 and 1.0 g COD/g VSS·d (Dolfing and Bloemen, 1985;
Field et al., 1988; Guiot, 1991; Soto et al., 1992; Isa et al., 1993).

Figure 2a
AMA test results for test biomass

maintained at different operating conditions.
VSS(I): Volatile suspended solids (initial)
VSS(F): Volatile suspended solids (final)
Legend: � First feeding

� Second feeding
� Third feeding

Figure 2b
TMA test results for test biomass

maintained at different operating conditions.
VSS(I): Volatile suspended solids (initial)
VSS(F): Volatile suspended solids (final)
Legend: � First feeding

� Second feeding
� Third feeding

TABLE 3
TMA AND AMA VALUES FOR TEST SLUDGE

Activity (g CH4-COD/g VSS·d)

     Region I     Region II    Region III

TMA AMA TMA AMA TMA AMA

0.635  0.359 0.604  0.175 0.887  0.176

The  estimated  values  of  AMA  and TMA
in the present case are within the reported
range. An analysis of TMA and AMA val-
ues for the test sludges reveals that the
difference in TMA and AMA values has
increased while the ratio of AMA to TMA
has decreased with an increase in EBHRT.
This indicates an increase in relative popu-
lation levels of HOM in comparison to
NHOM. TMA values of test sludges have
remained almost same in Region I and II,
while AMA values have decreased in Re-
gion II in comparison to that in Region I.
Again, AMA values are almost the same in
Regions II and III, while TMA values in-
creased in Region III. This certainly signi-
fies the effect of changed operational condi-
tions on the test biomass composition under
a fixed OLR. As EBHRT was changed from
1 to 2 d and influent COD levels increased
from ≈5 (Region I) to ≈10 g/� (Region II),
there seems to be a shift in relative popula-
tion levels of HOM and NHOM to ward off
the stress caused by the changed operational
conditions (Harper and Pohland, 1986). The
population level of NHOM may have de-
creased in Region II as compared to Region
I since AMA values have decreased. This
also suggests that HOM population levels
would have increased as the total methano-
genic population level, as indicated by al-
most the same values of TMA in Regions I
and II, remains unchanged. There is a net
increase in population levels of HOM while
maintaining lower population levels of
NHOM in Region II. This change in opera-
tional conditions between Region I and
Region II has resulted in a shift in popula-
tion level of HOM and NHOM while almost
maintaining total methanogenic population
levels. Further increases in EBHRT (from 2
to 4 d) and influent COD (from ≈10 to ≈ 20
g/�) in Region III while keeping a fixed OLR
has encouraged maintenance of larger popu-
lation levels of HOM. Grotenhuis et al.

(1991) also observed that methanogenic activity of granules in-
creased steadily with increasing influent substrate concentration
attributed to an increased fraction of viable organisms in the more
heavily loaded granules. This situation may have contributed to
more methane production via utilisation of H

2
/CO

2
 substrate by

HOM. This change in biomass composition might have improved
filter performance at increased EBHRT at a fixed OLR.
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Filter performance correlation with activity results

The summarised performance results of UAF grouped in three
regions are presented in Table 4. The details are available else-
where (Jawed, 1996). Results indicate that performance of the filter
changed significantly with increasing  EBHRT even  though  OLR
was fairly constant. The average  COD removal  increased  from
62% at lower EBHRT (1 d) to 73% at higher EBHRT (4 d). The
AMGPR increased with an increase in EBHRT which is in agree-
ment with the overall increase in total  methanogenic  population
as obtained from TMA tests. Similar trends for biogas production
in a fixed film reactor were observed by Liu et al. (1995) in which
EBHRT was decreased from 72  to 6 h at a constant OLR (≈5 kg
COD/m3·d). Also, COD equivalent of methane gas produced
increased with an increase in EBHRT and was significantly higher
than COD removed as calculated from  influent and effluent COD
values. This indicates  that  with  increase in  EBHRT, biomass
yield  decreased. The BA utilisation to maintain reactor pH ≈7
decreased significantly with an increase in EBHRT. The leakage of
VFA in effluent is more at lower EBHRT and decreased signifi-
cantly at higher EBHRT which is in agreement with decreased
population levels of acetoclastic methanogens as obtained from
AMA tests.

Conclusions

The anaerobic biomass composition may be assessed using a
simple methanogenic activity test procedure selecting acetate as
one test substrate while the other substrate should be one on which
the biomass is being maintained. The activities so obtained corre-
late well with the reactor performance and clearly demonstrate the

change in relative population levels of methanogenic species
(mainly HOM and NHOM) with changing  operational conditions.
Therefore, the activity test can be used to monitor the biomass
composition along with usual reactor performance evaluation
parameters for giving a better insight into the reactor stability and
performance.
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