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Abstract

Since the development of the entropy theory in the late 1940s and of the principle of maximum entropy (POME) in the late 1950s,
there has been aproliferation of applications of the entropy theory in awide spectrum of areas, including environmental and water
resources. Thereal impetusto entropy-based modellinginwater resourceswasprovidedin 1970s. A great variety of entropy-based
applicationsin environmental and water resourceshavesincebeen reported, and new applicationscontinueto unfold. Most of these
applications have, however, been in the realm of modelling and a relatively few applications have been reported on decision-
making. This paper revisitsthe entropy theory and discussesits usefulnessin environmental and water resources, and is concluded

with comments on its implications in developing countries.

Introduction

Environmental and water resource systems are inherently spatial
and complex, and our understanding of these systemsislessthan
complete. Many of the systemsare either fully stochastic, or part-
stochastic and part-deterministic. Their stochastic nature can be
attributed to randomness in one or more of the following compo-
nents that constitute them: system structure (geometry); system
dynamics; forcing functions (sources and sinks); and initial and
boundary conditions. Asaresult, astochastic description of these
systemsis needed, and the entropy theory enables devel opment of
such a description.

Engineering decisions concerning environmental and water
resource systems are frequently made with less than adequate
information. Such decisions may often be based on experience,
professional judgment, thumbrules, crudeanalyses, safety factors,
or probabilistic methods. Usually, decision-making under uncer-
tainty tends to be relatively conservative. Quite often, sufficient
data are not available to describe the random behavior of such
systems. Although probabilistic methodsallow for amoreexplicit
and quantitative accounting of uncertainty, their major difficulty
occursdueto the availability of limited or incompletedata. Small
sample sizes and limited information render estimation of prob-
ability distributionsof systemvariableswith conventional methods
quitedifficult. Thisproblem canbealleviated by useof theentropy
theory which enables determination of theleast-biased probability
distributionswith limited knowledge and data. Wherethe shortage
of data is widely rampant as is normally the case in developing
countries, the entropy theory is particularly appealing. The objec-
tive of this paper isto revisit the entropy theory and underscoreits
usefulness for both modelling and decision-making in environ-
mental and water resources.

Entropy theory

The entropy theory is comprised of three main parts: Shannon
entropy, principleof maximum entropy, and principleof minimum
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cross entropy. Before discussing these parts, it will beinstructive
to briefly discuss the meaning of entropy.

Meaning of entropy

The zeroth law of thermodynamics is related to the concept of
temperature T, the first law of thermodynamics is related to the
concept of internal energy U, and the second |aw of thermodynam-
ics is related to the thermodynamic variable, called entropy, S,
which is defined for a system as:

d
ds=22, §ds=0 M

where:
dSisthe change in entropy
dQ isthe change in heat
T isthe temperature.

§ indicatesthat theintegral isevaluated for acompletetraversal of
the system response cycle. In Eq. (1), temperature is a state
variable.

Heat is disordered energy. Energy can exist without disorder.
The genera principleisthat energy becomes heat as soon asit is
disordered. Conversely, disorder can exist without energy, and
disorder becomes heat as soon asit is energised. Thus, to specify
heat two numbers are needed: one to measure the quantity of heat,
and the other to measure the quantity of disorder. The quantity of
heat energy is measured in terms of calories and the quantity of
disorder ismeasured in terms of entropy.

If there is a connection between disorder and entropy, then
disorder, like entropy, must increase in natural processes. Thisis
indeed the casg, i.e. there is a tendency for a natural process to
proceed toward a state of greater disorder. To illustrate, consider
the confluence of two rivers having different sediment concentra-
tions C, and C,. Downstream of the confluence, the downstream
reach attainsanintermediate concentration C. Theriver systemhas
been more disordered in this natural process because we have lost
our ahility to classify sediment concentration. The statement that
dischargeintheriver correspondsto concentration Cisweaker than
the statement that discharge in River A corresponds to sediment
concentration C, and dischargein River B correspondsto sediment
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concentration C, .
In statistical mechanics, disorder hasaprecise meaning andits
connection with entropy is expressed as:

S=kinw=-klInp )

where:
k isthe Boltzmann constant
Sisthe entropy of the system
w, called the disorder parameter, is the probability that the
systemwill existinthestateitisin, relativetothepossiblestates
it could bein.

Eq. (2) defines the Boltzmann entropy and connects a thermody-
namic or macroscopic quantity, the entropy, with a statistical or
microscopic quantity, the probability. This also helps place the
second law of thermodynamicson astatistical basis. Thus, entropy
has been employed in thermodynamics as a measure of the degree
of ignorance about the true state of a system. Algebraically, it is
proportional to the logarithm of the probability of the state the
system in. In ahydraulic system, if there were no energy loss the
systemwould beorderly and organised. Itistheenergy lossand its
causesthat make the system disorderly and chaotic. Thus, entropy
can be interpreted as a measure of the amount of chaos within a
system. In hydraulics, entropy is a measure of the amount of
irrecoverable flow energy which is expended by the hydraulic
system to overcome friction. The system converts a portion of its
mechanical energy to heat energy which then is dissipated to the
external environment. Thus, the process eguation in hydraulics
expressing energy (or head) loss originates indeed in the entropy
concept.

The direction of disorder in which natural processes occur
(toward higher entropy) is determined by the laws of probability
(toward amore probable state). The equilibrium stateisthe state of
maximum entropy thermodynamically and the most probabl e state
statistically. It must, however, be noted that fluctuationsmay occur
about an equilibrium distribution (for example, the Brownian
motion). This means that entropy increase in every spontaneous
process is not a certainty. Indeed in certain processes it may
decrease. Over asufficiently long time horizon, however, eventhe
most improbable states might occur. For example, the water in a
pond suddenly freezesin spring or extreme winds, such as torna-
does, strike an area. Although such occurrences are possible, the
probability of their happening, when computed, isincredibly small.
Thus, the second law of thermodynamics showsthe most probable
course of events, not the only possible ones.

Entropy is an extensive property like mass, energy, volume,
momentum, charge, or number of atoms of chemical species, but
unlike these quantities, it does not obey aconservation law. Since
entropy of asystemisan extensiveproperty, thetotal entropy of the
system equals the sum of entropies of individual parts:

m m
S=3 S =73 kinp: +cons

. [ I 3
i=1 =1 ®
where:

S isthe entropy of thei th subsystem,

p, isthe probability of being in thei th state,

consisaconstant, and

k is constant.

Themost probabledistribution of energy inasystemistheonethat
corresponds to the maximum entropy of the system:
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m
S=Zk|n P, =maximum @
=1
This occurs under the condition of dynamic eguilibrium. During
evolution toward astationary state, the rate of entropy production
per unit mass should be minimum, compatible with external
constraints. Thisisthe Prigogin principle:

d—S-aminimum (5)
dt
Inthermodynamics, entropy isdecomposedintotwo parts: entropy
exchanged between the system and its surroundings; and entropy
produced in the system itself:

dS = dSe + dSi (6)

According to the second law of thermodynamics, the entropy of a
closed and isolated system always tends to increase.

Shannon entropy

Eg. (2) can be extended to quantify disorder of a system by
including all probable states. Thisled Shannon (1948) to develop
the entropy theory for expression of information or uncertainty.
Tounderstandtheinformational aspect of entropy weconsider aset
consisting of nevents. Weview uncertainty asasituationwherewe
do not know which event among n events will occur. Thus,
uncertainty is about which one of those events actually occurs.
Based on one’ sknowledge about the events, the uncertainty can be
more or less. For example, thetotal number of eventsis apiece of
information and the number of those events with non-zero prob-
ability isanother pieceof information. Theprobability distribution
of the events, if known, provides a certain amount of information.
Shannon (1948) defined a quantitative measure of uncertainty
associated with a probability distribution or the information con-
tent of thedistribution intermsof entropy, called Shannon entropy
or informational entropy. The uncertainty can be quantified with
entropy takingintoaccount al different kindsof availableinforma
tion. Thus, entropy is a measure of the amount of uncertainty
represented by the probability distribution and is ameasure of the
amount of chaos or of the lack of information about a system. |If
complete information is available, entropy = 0. Otherwise, itis
greater than zero. The Shannon entropy istheweighted Boltzmann
entropy.

Consider, for example, a drainage basin schematised by a
channel network inwhich channelsareidealised assinglelinesand
links are network segments, as shown in Figure 1. A new link is
formed by the junction of no more than two links and sources are
the pointsfurther upstreamin the network. The magnitude of alink
is the number of sources upstream draining into that link. The
magnitude n of the channel network is that of the outlet link and
equal sthenumber of first order streams. L et each link beassociated
with an average elevation and can have one of the m average
elevations, e ,i=1,2,3,...,m. Letp, betheprobability of alink
having elevation g . The Shannon entropy S of the drainage basin
system can be expressed as:

m
S:_izl p; Inp, Q)

For a continuous variable, the Shannon entropy can be written as

S=-Jg f(x)Inf (x)dx ®)
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Figure 1
Definition of a simplified drainage network formed by links,
external nodes (sources), and internal nodes. The Horton order of
each link is reported in parentheses. In this figure the network
maghnitude n (the number of sources) is 6, the topological
diameter D (maximum topological distance d from the outlet) is 5,
and the Horton order is 3.

Principle of maximum entropy

Jaynes (1957) formulated the principle of maximum entropy
(POME) afull account of whichispresentedin atreatise by Levine
and Tribus (1978) and Tribus (1968). Accordingto POME, when
making inferences based on incompl eteinformation, the probabil -
ity distribution to be drawn must have the maximum entropy
permitted by the available information expressed in the form of
congtraints. According to the Shannon entropy as an information
measure, the POM E-based distribution isfavored over those with
lessentropy amongthosewhich satisfy thegivenconstraints. Thus,
entropy defines a kind of measure on the space of probability
distributions. Intuitively, distributionsof higher entropy represent
more disorder, are smoother, are more probable, are |ess predict-
able, or assumeless. The POME-based distribution is maximally
noncommittal with regard to missing information and does not
require invocation of ergodic hypotheses.
Mathematically, we maximise the Shannon entropy:

Maximise S:_T f (x)In f(x)dx
0

subject to the available information (or knowledge). This know-
ledge is expressed in terms of constraints, such as:
00

6 g (x) f(x)dx=E[g;(x)],i=012,

Solution of Eqg. (9), subject to Eq. (10), can be obtained by using
the method of Lagrange multipliers. Thisyields

m
Fg=expl=49 = 3 46 ()]

where:

©)

(10)

(11)
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ALi=0,1,2 ... , m, are Lagrange multipliers, which can be
expressed in terms of constraints given by Eq. (10).

Principle of minimum cross entropy

According to Laplace's principle of insufficient reason, all out-
comesof an experiment should be considered equally likely unless
there is information to the contrary. For example, taking the
previous example of a drainage basin, the probability of a link
having an elevation is 1/m, if there is no information available on
elevations of links.

Suppose we guess a probability distribution for a random
variableX asQ={q,, q,, q, ......, g, } based onintuition or theory.
This constitutes the prior information in terms of aprior distribu-
tion. To verify our guess, we take aset of observations X ={x, X,,
b ST ,X,} and computemomentsbased on these observations.
ToderivethedistributionP={p,, p,, P, ,verevren. ,p} of X, wetake
all the given information and make the distribution as near to our
intuition and experience as possible. Thus, the principle of mini-
mum cross entropy (POMCE) is expressed, when the cross en-
tropy, D(P,Q), is minimised, as:
Pi

Gi

n
D(P'Q):iglpi In (12)

On the basis of intuition, experience or theory, arandom variable
may have an a priori probability distribution. Then, the Shannon
entropy is maximum when the probability distribution of the
random variable is that one which is as close to the a priori
distribution as possible. This is referred to as the principle of
minimum cross entropy which minimises the Bayesian entropy
(Kullback and Leibler, 1951). Thisisequivalentto maximisingthe
Shannonentropy. Hereminimising D(P,Q) isequivalenttomaxim-
ising the Shannon entropy.

Entropy theory as a decision tool in environ-
mental and water resources

Although the entropy theory has been applied in recent yearsto a
great variety of problemsinenvironmental andwater resources, its
potential as a decision-making tool has not been fully exploited.
What follows is a discussion highlighting this potential. Funda-
mental to the concepts presented below is the need of probability
distributions which can be derived using the entropy theory.

Information of data

Onefrequently encountersasituationinwhichto exercisefreedom
of choice, evaluateuncertainty or measureinformationgain or |0ss.
Thefreedom of choice, uncertainty, disorder, information content,
orinformationgainor loss hasbeenvariously measured by relative
entropy, redundancy, and conditional and joint entropies employ-
ing conditional and joint probabilities. As an example, in the
analysisof empirical data, thevariance has often been interpreted
as a measure of uncertainty and as revealing gain or loss in
information. However, entropy is another measure of dispersion -
an aternative to variance. This suggests that it is possible to
determine the variance whenever it is possible to determine the
entropy measures, but thereverseisnot necessarily true. However,
varianceis not the appropriate measure if the sample sizeissmall.
The advantage of the entropy measure isthat it is derived from a
theoretical basisand not apersonal preference, andthat it takesinto
consideration small values with appropriately small weights.
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Since entropy is a measure of uncertainty or chaos, and vari-
ance g? isameasure of variability, the connection betweenthemis
of interest. In general, an explicit relation between entropy and
variancedoesnot exist. However, for certaindistributions, Scanbe
expressed as a function of a2. If two distributions have common
variance, an entropy-based measure of affinity or closeness be-
tween the distributions, A(.,.), can be defined (Mukherjee and
Ratnaparkhi, 1986). The affinity between two distributions is
defined by the absolute difference between entropies of the two
distributions, which can be shown to be the expectation of the
likelihood ratio:

AT, f.)=

1 575 ‘ (13)
wheref, andf, arethetwo probability density functions. Eq. (13)
can be cast as

A(fy. f))=[E[og (1 1))]

which is the expectation of the likelihood ratio. This measure
differs from Kullback’s minimum distance information criterion.
Likewise, asimilarity functionisdefined asone minusthequotient
of the affinity between any two distributions and the maximum
value of affinity between the distributions:

AT )
_max[A(fi,fj)]'

(14)

S(f; fj)=1 i#] (15
whereS, and S, areentropiesof thetwodistributions. Thus, affinity
(distance) is a monotonically decreasing function of similarity.
The similarity factor can be used to cluster or group models.

To measure correlation or dependence between any two vari-
ables, aninformational coefficient of correlationr,isdefined asa
function of transinformation, T

r0=[1—exp(—2T0)]0'5,0 er <1 (16)
_ p(x,y)
To=]f P(X,Y)mmd)(dy 17

where:
p(x) and q(y) are marginal probability density functions of x
and y, respectively
p(X, y) isthejoint probability density function of (x, y).

Thetransinformation expressesthe upper limit of common infor-
mation between two variablesand representsthelevel of depend-
ence (or association) betweenthevariables. Thisisalsoreferredto
asmutual information. It representsthe upper limit of transferable
information between the variables, and its measureisgivenby r_,
which is a better measure of correlation than is the ordinary
correlation coefficient, r. The ordinary correlation coefficient r
measuresthe amount of information transferred between variables
under specified assumptions, such as linearity and normality. An
inference similar to that of the ordinary correlation coefficient, r,
can be drawn by defining the amount (in per cent) of transferred
information by theratio T/T , where T can be computed in terms
of ordinary r.

Criteria for model selection
Usually there are more model s than one needs and a choice hasto

be made asto which model to choose. Akaike (1973) formulated a
criterion, called Akaike information criterion (AIC), for selecting
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the best model from amongst several models. The information
criterion AIC provides amethod of model identification and can
be expressed as minus twice the logarithm of the maximum
likelihood plus twice the number of parameters used to find the
best-fit model:

AIC =-2log(maximized likelihood) +2k (18)
where k is the number of parameters in the distribution. In case
there are several models, the model giving the minimum value of
AlCshouldbeselected. Whenthemaximum |ikelihoodisidentical
for two models, the model with the smaller number of parameters
should be selected, for that will lead to smaller AIC and comply
with the principle of parsimony.

Hypothesis testing

Another important application of the entropy theory isintesting of
hypotheses(Tribus, 1969). Withuseof Bayes' theoreminlogarith-
mic form, an evidence function is defined for comparing two
hypotheses. Theevidenceinfavor of ahypothesisover itscompeti-
tor isthedifference between therespective entropies of the compe-
tition and the hypothesis under test. Defining surprisal as the
negative of thelogarithm of the probability, the mean surprisal for
aset of observationsis expressed as:

M ==Inp(xy) 19)
where x, is the observation in the set of observations. The mean
surprisal for the set of m observations is expressed as:

—1m 1 m 20
”k‘ﬁiglnk __ﬁigllnp(xk) 0

Therefore, the evidence function, EV, for two hypotheses is ob-
tained as the difference between the two values of the mean
surprisal multiplied by the number of observations:

EV =m(n -ny) 1)

Risk assessment

Incommon language, risk isthe possibility of lossor injury and the
degree of probability of such loss. Rational decision-making
requiresaclear and quantitativeway of expressingrisk. Ingeneral,
risk cannot be avoided and a choice has to be made between risks.
There are different types of risk, such asbusinessrisk, social risk,
economic risk, safety risk, investment risk, occupational risk, etc.
To put risk in proper perspective, it isuseful to clarify the distinc-
tion between risk, uncertainty, and hazard.

The notion of risk involves both uncertainty and some kind of
loss or damage. Uncertainty reflects the variability of our state of
knowledge or state of confidencein aprior evaluation. Thus, risk
isthe sum of uncertainty plus damage:

risk = uncertainty + damage (22)
Hazard iscommonly defined asasource of danger and involves a
scenario identification (e.g. failure of a dam) and the consequent
measure of that scenario or the measure of the damage. Risk
encompasses the likelihood of conversion of that source into the
actual delivery of loss, injury, or someform of damage. Thus, risk
istheratio of hazard to safeguards:
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hazard
safeguards

risk = (23

By increasing safeguards, risk can be reduced but it is never zero.
Since awareness of risk reduces risk, awareness is a part of
safeguards. Qualitatively, risk is subjective and is relative to the
observer. Risk involves the probability of scenario and its conse-
quenceresulting from happening of thescenario. Thus, onecansay
that risk isprobability and consequence. Risk isrelated to entropy,
for the latter is employed to derive the probability distribution.

Safety evaluation

Safety has two components:  reliability and probabilistic risk
assessment (PRA). Inreliability, asafety margin or probability of
failureisdefined when maximum external loadsare specified (i.e.,
design-basis loads such as design discharge). There can be three
domains of safety: safe domain (no failure); potentially unsafe
domain (failureispossible); and unsafe (failure) domain (afailure
is certain). The safe and unsafe domains are separated by a limit
state surface. A system will fail if the failureindicator reachesthe
limit state surface. If we consider aprobability density function of
failure at a value of the failure indicator, then the cumulative
probability of the failure indicator defines fragility.

InPRA, the probability of failurefrom loads exceeding design
basis loads is considered. Through introduction of a hazard
function, the probability density function of external loads is
specified. Consider a hydraulic system with a set of random
parameters. The system can fail in many ways and every failure
mode can be described with a corresponding failure indicator
involving a number of different failure modeswhich isafunction
of hazard parameters and the random parameters. For example, in
case of an earth dam, depending upon the failure mode, afailure
indicator could be erosion at the bottom, reservoir water level,
water leakage, displacement, etc. Hazard parameters could be
extremerainfal, reservoir level, peak discharge, depth of water at
thedamtop, etc. Structural random parameters could be strengths
of materials, degree of riprap, degree of packing, internal friction,
etc. Entropy factors in safety evaluation through obtaining prob-
ability distributions.

Reliability analysis

Reliability of a system can be defined as the probability that the
system will perform its intended function for at least a specified
period of timeunder specified environmental conditions. Different
measures of reliability are applied to different systems, depending
upon their objective. Indeed, the use of a particular system
determinesthe kind of reliability measure that is most meaningful
and most useful. Asan example, the reliability measure of adam
isthe probability of its survival during its expected life span. On
the other hand, the reliability measure associated with hydroel ec-
tric power plant componentsisthefailurerate, sincethefailure of
a plant is of primary concern. Furthermore, at different times
during the operating life a system may be required to have a
different probability of successfully performing its required func-
tion under specified conditions. Theterm “failure” meansthat the
systemisnot capableof performing itsrequired function. Weonly
consider the case wherethe systemis either capable of performing
itsfunctionsor not and excludethe caseinvolving varying degrees
of capability.

If thereliability isdefined asthe probability of success, that is,
the system will perform itsintended function for at least adefined
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period of time, then the reliability function can be computed
directly from the knowledge of thefailuretimedistribution. If the
system is resurrected through repair and maintenance then the
mean failure timeis known as the mean (operating) time between
failures. Themeantimetofailure istheexpectedtimeduringwhich
the system will perform successfully, also expressed as the ex-
pected life.

Therateat which failuresoccur in atimeinterval isthefailure
rate and is defined by the probability that a failure per unit time
occursintheinterval, provided that afailure hasnot occurred prior
tothebeginningof theinterval . Thehazard rate (or hazard function)
is defined by the limit of failure as the length of the time interval
approaches zero. Thisimplies the instantaneous failure rate. The
importance of entropy inreliability engineeringliesinitsability to
incorporate prior knowledge in the estimated reliability.

Entropy theory as a modelling tool in
environmental and water resources

A historical perspective on entropy applicationsin environmental
and water resources is given in Singh and Fiorentino (1992) and
Singh (1997). Harmancioglu and Singh (1998) discussed the use
of entropy in water resources. In what follows is a discussion of
entropy-based applications.

Derivation of probability distributions

Often needed arefrequency or probability distributionsthat satisfy
the given information. The entropy theory isideally suited to that
end. Indeed POME has been employed to derive a variety of
distributions some of which have found wide applications in
environmental and water resources. Many of these distributions
have been summarisedin Singh et a. (1986), Singh and Fiorentino
(1992) and Singh (1998). When there are no constraints, then
POME yields a uniform distribution. As more constraints are
introduced, the distribution becomes more peaked and possibly
skewed. Inthisway, theentropy reducesfrom amaximumfor the
uniformdistributionto zerowhenthesituationisentirely determin-
istic.

Consider, asan example, thecase of deriving theinstantaneous
unit hydrograph (IUH) for awatershed. Thel UH can be considered
asaprobability distribution of thetime of travel (t). Thus, thetime
of travel is construed as the random variable. It is assumed that
rainfall occurs uniformly over the entire watershed and that ab-
stractions, such as surface detention, depression storage, ante-
cedent condition, infiltration, etc., are satisfied by the watershed
first before occurrence of surface runoff. Theresfter, the rainfall
would be the rainfall excess which leads to surface runoff. This
assumption is essential for consideration of the [lUH.

When rainfall excess occurs over the space of the watershed,
the rainfall excess starts travelling toward the outlet. Since the
watershed surface has virtually infinite number of points at which
thetravel isinitiated, the number of travel pathsisinfinite. Oncea
water massstartstotravel, itstravel pathispretty much determined
first by the slopeand other characteristicsof theoverland planeand
then by the channel network. Thus, it is not unrealistic to surmise
that the number of values of the travel timesisinfinite. The water
dropletsfalling at the watershed outlet will take virtually no time
toreach the outlet, i.e., thetravel timeis zero. The water droplets
falling at the most remote portion will take the longest path and
consequently the longest time, equal to the time of concentration,
T.. Thus, t varies from zero to T_ . However, for simplicity of
analysis, it is assumed that t varies from zero to infinity.
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For derivingthel UH, weinvokeour el ementary understanding
of watershed hydrology and expressit in quantitative termscalled
constraints. Since lUH isaprobability distribution, it must satisfy

0

éf (t)dt=1 (29)
Since the time of travel hasarange from 0to T, we may wish to
express an average value of t as

0

J)t f(t)dt=t=E[t]=k (25)
It may berecalled that the averagetravel timeisthe sameasthelag
time of the watershed, which has been found to have a strong
correlation with watershed characteristics, such asarea, slope, etc.
(Singh, 1988).

Tominimisetheimpact of extremevaluesonthevalueof k, we
may wishto expresstheaverageof thelogarithmically transformed
values of travel times:

00

élntf(t)dt:Int:E[Int] (26)
If Egs. (25) and (26) constitute the information we have on the
travel time, then we can invoke POME to derive the probability
density function of t, or IUH. To that end, we maximise the
Shannon entropy Eqg. (8), subject to Eqgs. (24) to (26). Thisisan
optimisation problem and can be solved using the method of
Lagrange multipliers. To that end, introducing the L agrange mul-
tipliers (A, A, A, ), the function, L(f), to be maximised becomes:

L(f)==15 f(t)In f(t)dt —/\O[J’:f (1) dt =1 =Ay [§ t £ (t) dt =k]

=M Int f (t)dt=Int] (27)
Taking partial derivatives of L with respect to f and setting the
resulting equation to zero, the following results:

ol(f):—ojo[ln F(1) +1+(Ay —1) +A; t +A, Int]af (1) dt =0 (28)
0
Eq. (28) yields:

f(t):exp[—/\0 ~At=A,Int] (29)

Eq. (29) specifies the entropy-based probability density function.
The Lagrange multipliers (A, A,, A, ) areto be expressed interms
of Egs. (24) to (26). To that end, the zeroth Lagrange multiplier,
also called the potential function, is obtained by substituting Eq.
(29) in Eq. (24):

[o4]
Ag=In 6exp[—/\1t—/\zlnt] (30)
Solution of Eqg. (30) yields
1
exp(A )Zfr(l—A ) (31)
0 All Az 2
The zeroth Lagrange multiplier is aso expressed as:
Ag=(Ay =1)InAy +In[F(1-A,)] (32)

Differentiating Egs. (30) and (32) with respect to A, and A, and
equating each derivative, respectively, to the constraints in Egs.
(25) and (26) and solving, we obtain:
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dA Ay -1

ﬁ=—E[t)= 2}\1 (33)

oA 0

0 _ -

@—InAl+@r(l—)\2)——E[lnt] (34)

Egs. (33) and (34) yield:
1_
E[t]:TZ (35)
Ellnt]==InA +¥(1-4,) (36)

where W(b) = d [In I'(b)]/db is the digamma function, with b =
1- A, . Substituting Eqg. (35) and (36) in Eq. (29), one obtains:

- tib-1 t
f (t)'ar(b) (g) EXp[_g] 37)
where A, = Vaand b = 1- A, Eq. (34) isthe familiar 2-parameter
gammadistribution. It is least biased and consistent with the data
expressed in terms of the constraints.

If, for example, oneal so hasanideaabout thetimetaken by the
antecedent conditionto besatisfied. Let that timebet . Thiscanbe
thought of as the time to ponding. Then the constraints can be
written as:

[e9)

tI In(t—to)f(t)dt: E[In(t—tO)]
0
00
[j (t=tg) f () dt=E[t] =k
0
Following the same procedure, the resulting lUH equation would
be:

(398)

(39)

t‘to

t-t
f(0)= g (50" Texpl-— 0]

(40)

exp[ -

which isthe Pearson type 3 distribution.
Parameter estimation

Itisdesirableto estimate parametersof aprobability distributionin
termsof thegiven constraints (Jaworski, 1987). Theentropy theory
accomplishes precisely that. Singh (1998) has described POME-
based estimation for anumber of probability distributions used in
environmental and water resources. He has a so discussed a com-
parison of the POME method with the methods of moments,
maximum likelihood estimation, and someothers. Thecomparison
showsthat the POM E methodiseither comparableto or better than
other methods.

As an example, consider the case of the gamma distribution
used in hydrology. Asan I[lUH model, it is frequently written as:

) =y (O Lol -]

(41)

where k is the reservoir lag time and n is the number of linear
reservoirs. Eqg. (41) is was proposed by Nash (1958) and is a
response of a cascade of equal linear reservoir subjected to an
instantaneous burst of rainfall excess having a unit volume.
This equation has two parameters k and n, which need to be
estimated. Singh and Rajagopal (1986) developed an entropy-
based parameter estimation, called parameter space expansion
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method. For Eq. (41), this method works as follows. First, we
determine the constraints on which Eq. (41) is based. This is
obtained by substituting Eq. (41) in Eq. (24):

s:—I f(t)In f (1) dt (42)
0

bt ot Loty ot
= _U[kr(n)(k) exp[ k]ln{kr(n)(k) exp[ I(]}dt

The constraints are:
00 —
6t f(t)dt=t 43)
00
(44

6|n(t) f(t)dt=E[Int]=Int

The Pome-based formulation of the distribution is given by:

f(t)=exp[-Ag —At =A, Int] (45)
which isthe same as Eq. (29). Therefore,

E[t]=k

E[Int]=Ink +¥(n),¥(n)=d[InT (n)]/dn (46)

Singh and Singh (1985) applied Egs. (45) and (46) to anumber of
rainfall-runoff events from a large experimental rainfall-runoff
facility. Therainfall intensity was uniformin both time and space.
Parameters n and k were estimated by POME and also by the
method of moments (MOM), method of cumulants (MOC), maxi-
mum likelihood estimation (MLE), and method of least squares
(MOLYS). Using the parameter val ues estimated by these methods,
the unit hydrographs were generated and convoluted with appro-
priate rainfall hyetographs to generate runoff hydrographs. For a
sample events, observed and computed runoff hydrographs are
shown in Fig. 2. For this event, POME, MOM and MOLS were
comparable. Thiswasalsotruefor other events. Thus, Pome offers
a competitive method of parameter estimation.

Maximum entropy-spectral analysis for flow
forecasting

Burg (1968) defined entropy in terms of power spectrum W(f),
where f isfrequency. For a stationary stochastic process x(t), the
Burg entropy, H(f), is expressed as:

+W
H ()= (In[w (f)]df
(47)
wherew isthe frequency band. The spectrum W(f) can be written
in terms of the Fourier series as:

W(f) =$z:’=_wp(n)exp[—i2nn fAt]

(48)
where At isthe sampling timeinterval, i = (-1)°°, and p(n) isthe
autocorrelation defined as:
+w
p(n)= [W(f)exp[i2rmfnAt)df ,-m<n<m
-w

(49)

where mislag. It has been shown (Krstanovic and Singh, 1993a,
b) that maximisation of Eq. (47) is equivalent to maximisation of:
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A comparison of observed and computed runoff hydrographs for
event 3. The methods of parameter estimation are MOM, MOC,
MLE, POME, and MOLS

+w

[ In[W(f)]df
-w
subject to constraints defined by Eq. (49). Substitution of Eq. (48)
in Eq. (50) and maximisation leads to MESA.

The maximum entropy spectral analysis (MESA), introduced
by Burg (1975), has several advantagesover conventional spectral
analysismethods. It hasshort and smooth spectrawith high-degree
resolutions. The statistical characteristics which are used in
stochastic model identification can a so beestimated using MESA,
thus permitting integration of spectral analysis and computations
related to stochastic model development. Jaynes (1982) hasshown
that M ESA and other methodsof spectral analysis, suchasSchuster,
Blackman-Tukey, maximum likelihood, Bayesian, and auto-
regressive (AR, ARMA or ARIMA) modelsarenot in conflict, and
that AR modelsareaspecial caseof MESA. Krstanovic and Singh
(1991a,b) employed MESA for long-term streamflow forecasting.
Krstanovic and Singh (1993a,b) extended the MESA method to
develop a real-time flood forecasting model. Figure 3 shows
streamflow regeneration for River Orinoco for the case of forward
forecastinmg (Singh and Krstanovic, 1991b). This figure clearly
shows aclose agreement between observed and MESA -computed
streamflows.

H(f)=%|n(2w) (50)

+7
4w

Basin geomorphology

Entropy playsafundamental role in characterisation of landscape.
Using the entropy theory for morphological analysisof river basin
networks, Fiorentino et al. (1993) found the connection between
entropy and the mean basin elevation as:

y=-alnb+as (51)
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Streamflow regeneration for River Orinoco (forward forecasting)
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Average elevation versus Shannon entropy of subnetworks
whose outlets lie on the main channel and respective least
squares lines, for (a) Arcidiaconata, (b) Lapilloso, and
(c) Vulgano basins.

where:
y isthe mean basin elevation,
Sisentropy, and
aand b are parameters having physical significance.

Similarly, therel ation between thefall in elevation from the source
to the outlet of the main channel and the entropy of its drainage
basin was found to be linear:

F=a +BS (52)

8 ISSN 0378-4738 = Water SA Vol. 26 No. 1 January 2000

where F isthefall in the elevation from the source to the outlet of
themain channel, and a and 3 are parameters. Inasimilar vein, the
relation between the elevation of a node and the logarithm of its
distance from the source was found to be:

Ind

nD (53)

Ys=Yo~F
where:

y,isthe elevation of the source of the channel

y,isthe elevation of the downstream node at a distance from

the source

D isthe topological diameter

Fisthefall in elevation from the source to the outlet.

When abasin was ordered following the Horton-Strahler ordering
scheme, alinear relation was found between the drainage entropy
and the basin order:
S=QInR, -In(R, -1) (54

whereR isthestream lengthratio, and Sisthe order of the basin.
Thisrelation can becharacteri sed asameasure of thebasin network
complexity. Thebasin entropy wasalsofoundto belinearly related
to the logarithm of the magnitude of the basin network:

I:QL
R, -
This relation led to a non-linear relation between the network

diameter and magnitude where the exponent was found to be
related to the fractal dimension of the drainage network:

S=(Q-1)InR, +n[ ] (55)

R
S=In(R7L_1n“°) (56)
L
where:
c=1.75, and

n is the magnitude of the drainage basin.

Fiorentino et al. (1993) verified Egs. (51) to (56) on a number of
basinsin Italy and close agreements between entropy-based deri-
vations and observed geomorphol ogic variables. Figure 4 showsa
relation between the average elevation and Shannon entropy for
three subbasinswhose outletslie on themain channel. Inthefigure
the x-axis denotes entropy and the y-axis the average elevation..

Design of hydrologic networks

The purpose of measuring networks is to gather information in
terms of data. Fundamental to evaluation of these networksisthe
ability to determine if the networks are gathering the needed
information optimally. Theentropy theory isanatural tool to make
that determination. Krstanovic and Singh (1992a,b) employed the
theory for space and time evaluation of rainfal networks in
Louisiana. The decision whether to keep or to eliminate a rain-
gaugewasbased entirely on reduction or gain of information at that
gauge. In this manner the best combination of rain-gauges was
suggested. Y ang and Burn (1994) employed ameasureof informa-
tion flow, called directional information transfer index (DIT),
between gauging stationsin the network. The DIT is defined as:

DIT :I: S_S\ost
S S S

—1_ﬁ (57)
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Sisthe entropy (or information content) of the station X
T isthe transinformation (or mutual information) between
station X and Y

S istheinformation lost (or the amount of information
transmitted).

Thevaueof DIT variesfromOwherenoinformationistransmitted
andthestationsareindependent to onewherenoinformationislost
and the stations are fully dependent. Between two stations of one
pair, the station with higher DIT value should be retained because
of its greater capability of inferring information at the other side.

Note that DIT is not symmetrical, for DIT (X,Y) = T/S(X)
for station X is, in general, not equal to DIT (Y, X) = T/S(Y) for
station Y. DIT (X, Y) describesthefractional information inferred
by station X about station Y, whereas DIT (Y, X) isthe fractional
information inferred by station Y about station X. Between two
stations of one pair, the station with higher DIT value should be
retained because of itsgreater capability of inferringinformation at
other stations. Theconcept of DIT canbeextendedtoregionalisation
of networks.

Reliability of water distribution systems

Entropy-based measures have been developed for evaluation of
reliability and redundancy of water distribution networks. These
measures accurately reflect changes in the network reliability.
However, the redundancy of anetwork al so depends on the ability
of the network to respond to thefailure of oneof itslinks. Awumah
et a. (1990) applied these measures to evaluate reliability/redun-
dancy of arange of network layouts and showed that the entropy-
based redundancy measure was a good indicator of the relative
performance implications of different levels of redundancy.

The network redundancy (or reliability) measure of a water
distribution system is expressed as:

Q9

<, 9 :
R=2(q, R~ 2,

where:
R is the network redundancy
Q, isthe sum of flowsin all linksin the network
Q istotal flow into nodej
N is the number of nodes.

(58)

RJ. isexpressed as:

Z q\] | q\]

(59)

where:
g, isthe flow in thelink from node i to node
Q istheset of nodesontheupstream endsof linksincident upon
nodej.

Theright side of Eq. (58) isthe sum of two terms. Thefirst terms
expressesan al gebraic sum of weighted entropy measure at each of
the constituent nodes, and the second term defines the redundancy
among the N nodes. In a similar manner, Awumah et al. (1990)
extended the analysisto take account of the ability of anetwork to
responds to failure of one of itslinks.

Subsurface hydrology

In groundwater engineering, it isoften truethat few measurements
of aguifer and flow parameters, such as hydraulic conductivity, are
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available, and thereisalarge degree of uncertainty inthemeasured
values of fundamental flow parameters. Woodbury and Ulrych
(1993) used the principle of minimum relative entropy (POMRE)
to determine these parameters. Barbe et al. (1994) applied POME
to derive a probability distribution for piezometric head in one-
dimensional steady groundwater flow in confined and unconfined
aquifers, subject tothetotal probability law and the conservation of
mass. For exampl e, the cumulative probability distribution (cdf) of
piezometric head h in a confined aquifer was found to be:

h-h,
h, -h,

u

F(h)= (60)
where:
h, is the piezometric head at the lower end of the aquifer
ax=0
h,isthe head at the upper end at x = L
L isthe length of the aquifer.

The probability density function of h, f(h), is:

(61)

which is a uniform distribution. This is based on the assumption
that nothing is known about the distribution of head and therefore
there is no constraint.

From a few measurements of transmissivity (T) based on
pumping tests and of piezometric head, Bos (1990) employed
POME and Bayes' theoremto derivethe probability distribution of
transmissivity.

Application in hydraulics

Y ang (1994) showed that thefundamental theoriesin hydrodynam-
ics and hydraulics can be derived from variational approaches
based on maximisation of entropy, minimisation of energy, or
minimisation of energy dissipation rate. Chiu and Murray (1992)
applied POME to determinethe probability distribution of velocity
in non-uniform open channel flow:

U e oy YT

um m Ym - YO
where:

uisthe velocity that monotonically increases with y

m is an entropy parameter

u,, is the maximum velocity in achannel cross-section

y,, isthe maximum value of y

Y, isthe minimum value of y.

] (62)

Theentropy-based vel ocity distributionfitsexperimental datavery
well and is of great practical value in hydraulic modelling.

Water quality assessment

Environmental pollution can be perceived as aresult of discharge
of material and heat into the environment (water, air, and/or soil)
through human activity of production and consumption. When a
compound is added to pure water, the compound will dissolve and
diffuse throughout water. The dissolution and diffusion imply an
increaseintheentropy of thesolution (by virtueof itsdefinitionand
the second law of thermodynamics) and an increase in the degree
of pollution. Thissuggeststhat anincreaseinentropy implieswater
pollution. Water isextensively used in cooling, washing, disposal
of waste material, and dissipation of waste heat. Water pollution
can then be viewed as water initialy containing a low value of
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entropy being eventually discharged with high value of entropy
which, in turn, increases the entropy of the environment. Thus,
entropy can serve as a comprehensive index for assessment of
pollution control. To extend the argument further, the diversity of
speciesof organismsin water or the diversity index (DI) isrelated
to the degree of pollution. In general, the number of species
decreases as the degree of pollution increases. The DI can be
calculated from the entropy theory as:

DI=-YpInp
1=1

wherep,isthe number of organismsof speciesi divided by thetotal
number of organisms present in thewater. Thus, DI can be used to
evaluatewater quality of awater body intime and space, aswell as
to compare water quality of different water bodies. Because en-
tropy increases with pollution, energy is required to abate pollu-
tion, remove pollutants from water and purify it and in turn
decrease entropy of the polluted water. This suggests that the
efficiency of water treatment systems can be expressed by the
entropy production and thustheir thermodynamical efficiency can
be evaluated.

(63)

Design of water quality networks

The entropy theory, when applied to water quality monitoring
network design, yields promising results, especially in the selec-
tion of technical design features, such as monitoring sites, time
frequencies, variables to be sampled, and sampling duration.
Furthermore, it permitsaquantitative assessment of efficiency and
benefit/cost parameters. Harmancioglu and Singh (1998) reviewed
the advantages as well asthe limitations of the entropy method as
applied to the design of water quality monitoring networks. Given
an observed change in water quality levels at a downstream
location, the entropy-based formulation predictsthe probabilities
of each possiblewater quality level at each of theupstream stations.

Optimisation

Optimisation is widely needed in modelling as well as decision
making in environmental and water resources. The entropy theory
isapotentially powerful tool in constrained optimisation asshown
by Templeman and Xingsi (1987). Thisisapromising new areaof
research.

Implications for developing countries

One of the main problems plaguing environmental and water
resources development in developing countriesis the lack of data
or lack of sufficient data. Frequently, either thedataaremissing or
itisincomplete, or itisnot of good quality or the record is not of
sufficient length. Asaresult, moreoften than not, it isthe datathat
dictate the type of model to be used and not the availability of
modelling technology. Many conventional models are not appli-
cable when their data needs are not met. Furthermore, subjective
information such as professional experience, judgment, and thumb
or empirical rules have played a significant role in hydrologic
practice in many developing countries. Conventional models do
not have the capability to accommodate such subjective informa-
tion, although such information may be of good quality or high
value. The potential for application of the entropy theory is
enormous in developing countries, for it maximises the use of
information contained in data, however little it may be, and it
permits use of subjectiveinformation. Thus, intheface of limited
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datathe entropy theory resultsin areliable solution of the problem
at hand. Furthermore, it offers an objective avenue for drawing
inferences asto the model results. In addition, the entropy-based
modelling is efficient, requiring relatively little computational
effort and is versatile in its applicability across many disciplines.

Concluding remarks

The entropy theory is versetile, robust, and efficient. It permits
determination of the least-biased probability distribution of a
random variable, subject to the available information. Further-
more, it suggestsif theavailableinformationisadequate or not and
if not, then additional information should be sought. Inthisway it
bringsthemodel, the modeller, and the decision-maker closer. As
an objective measure of information or uncertainty, the entropy
theory allows to communicate with nature as illustrated by its
application to design of data acquisition systems, design of envi-
ronmental and hydrologic networks, and assessment of reliability
of these systems or networks. In a similar vein, it helps better
understand physicsor science of natural systemssuch aslandscape
evolution, geomorphology, and hydrodynamics. A widevariety of
seemingly disparate or dissimilar problems can be meaningfully
solved with use of entropy.
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