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Introduction

Environmental and water resource systems are inherently spatial
and complex, and our understanding of these systems is less than
complete.  Many of the systems are either fully stochastic, or part-
stochastic and part-deterministic.  Their stochastic nature can be
attributed to randomness in one or more of the following compo-
nents that constitute them:  system structure (geometry); system
dynamics; forcing functions (sources and sinks); and initial and
boundary conditions.  As a result, a stochastic description of these
systems is needed, and the entropy theory enables development of
such a description.

Engineering decisions concerning environmental and water
resource systems are frequently made with less than adequate
information.  Such decisions may often be based on experience,
professional judgment, thumb rules, crude analyses, safety factors,
or probabilistic methods. Usually, decision-making under uncer-
tainty tends to be relatively conservative. Quite often, sufficient
data are not available to describe the random behavior of such
systems.  Although probabilistic methods allow for a more explicit
and quantitative accounting of uncertainty, their major difficulty
occurs due to the availability of limited or incomplete data.  Small
sample sizes and limited information render estimation of prob-
ability distributions of system variables with conventional methods
quite difficult.  This problem can be alleviated by use of the entropy
theory which enables determination of the least-biased probability
distributions with limited knowledge and data. Where the shortage
of data is widely rampant as is normally the case in developing
countries, the entropy theory is particularly appealing. The objec-
tive of this paper is to revisit the entropy theory and underscore its
usefulness for both modelling and decision-making in environ-
mental and water resources.

Entropy theory

The entropy theory is comprised of three main parts: Shannon
entropy, principle of maximum entropy, and principle of minimum

cross entropy. Before discussing these parts, it will be instructive
to briefly discuss the meaning of entropy.

Meaning of entropy

The zeroth law of thermodynamics is related to the concept of
temperature T, the first law of thermodynamics is related to the
concept of internal energy U, and the second law of thermodynam-
ics is related to the thermodynamic variable, called entropy, S,
which is defined for a system as:

   (1)

where:
dS is the change in entropy
dQ is the change in heat
T is the temperature.

    indicates that the integral is evaluated for a complete traversal of
the system response cycle. In Eq. (1), temperature is a state
variable.

Heat is disordered energy. Energy can exist without disorder.
The general principle is that energy becomes heat as soon as it is
disordered. Conversely, disorder can exist without energy, and
disorder becomes heat as soon as it is energised. Thus, to specify
heat two numbers are needed: one to measure the quantity of heat,
and the other to measure the quantity of disorder. The quantity of
heat energy is measured in terms of calories and the quantity of
disorder is measured in  terms of entropy.

If there is a connection between disorder and entropy, then
disorder, like entropy, must increase in natural processes. This is
indeed the case, i.e. there is a tendency for a natural process to
proceed toward a state of greater disorder. To illustrate, consider
the confluence of two rivers having different sediment concentra-
tions C

1
 and C

2
. Downstream of the confluence, the downstream

reach attains an intermediate concentration C. The river system has
been more disordered in this natural process because we have lost
our ability to classify sediment concentration. The statement that
discharge in the river corresponds to concentration C is weaker than
the statement that discharge in River A corresponds to sediment
concentration C

1
 and discharge in River B corresponds to sediment
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concentration C
2
 .

In statistical mechanics, disorder has a precise meaning and its
connection with entropy is expressed as:

   (2)

where:
k is the Boltzmann constant
S is the entropy of the system
w, called the disorder parameter, is the probability that the
system will exist in the state it is in, relative to the possible states
it could be in.

Eq. (2) defines the Boltzmann entropy and connects a thermody-
namic or macroscopic quantity, the entropy, with a statistical  or
microscopic quantity, the probability. This also helps place the
second law of thermodynamics on a statistical basis. Thus, entropy
has been employed in thermodynamics as a measure of the degree
of ignorance about the true state of a system. Algebraically, it is
proportional to the logarithm of the probability of the state the
system in. In a hydraulic system, if there were no energy loss the
system would be orderly and organised. It is the energy loss and its
causes that make the system disorderly and chaotic. Thus, entropy
can be interpreted as a measure of the amount of chaos within a
system. In hydraulics, entropy is a measure of the amount of
irrecoverable flow energy which is expended by the hydraulic
system to overcome friction. The system converts a portion of its
mechanical energy to heat energy which then is dissipated to the
external environment. Thus, the process equation in hydraulics
expressing energy (or head) loss originates indeed in the entropy
concept.

The direction of disorder in which natural processes occur
(toward higher entropy) is determined by the laws of probability
(toward a more probable state). The equilibrium state is the state of
maximum entropy thermodynamically and the most probable state
statistically. It must, however, be noted that fluctuations may occur
about an equilibrium distribution (for example, the Brownian
motion). This means that entropy increase in every spontaneous
process is not a certainty. Indeed in certain processes it may
decrease. Over a sufficiently long time horizon, however, even the
most improbable states might occur. For example, the water in a
pond suddenly freezes in spring or extreme winds, such as torna-
does, strike an area. Although such occurrences are possible, the
probability of their happening, when computed, is incredibly small.
Thus, the second law of thermodynamics shows the most probable
course of events, not the only possible ones.

Entropy  is an extensive property like mass, energy, volume,
momentum, charge, or number of atoms of chemical species, but
unlike these quantities, it does not obey a conservation law. Since
entropy of a system is an extensive property, the total entropy of the
system equals the sum of entropies of individual parts:

   (3)

where:
S

i
 is the entropy of the i th subsystem,

p
i
 is the probability of being in the i th state,

cons is a constant, and
k is constant.

The most probable distribution of energy in a system is the one that
corresponds to the maximum entropy of the system:

   (4)

This occurs under the condition of dynamic equilibrium. During
evolution toward a stationary state, the rate of entropy production
per unit mass should be minimum, compatible with external
constraints. This is the Prigogin principle:

   (5)

In thermodynamics, entropy is decomposed into two parts:  entropy
exchanged between the system and its surroundings; and entropy
produced in the system itself:

   (6)

According to the second law of thermodynamics, the entropy of a
closed and isolated system always tends to increase.

Shannon entropy

Eq. (2) can be extended to quantify disorder of a system by
including all probable states. This led Shannon (1948) to develop
the entropy theory for expression of  information  or  uncertainty.
To understand the informational aspect of entropy we consider a set
consisting of n events. We view uncertainty as a situation where we
do not know which event among n events will occur.  Thus,
uncertainty is about which one of those events actually occurs.
Based on one’s knowledge about the events, the uncertainty can be
more or less.  For example, the total number of events is a piece of
information and the number of those events with non-zero prob-
ability is another piece of information.  The probability distribution
of the events, if known, provides a certain amount of information.
Shannon (1948) defined a quantitative measure of uncertainty
associated with a probability distribution or the information con-
tent of the distribution in terms of entropy, called Shannon entropy
or informational entropy. The uncertainty can be quantified with
entropy taking into account all different kinds of available informa-
tion. Thus, entropy is a measure of the amount of uncertainty
represented by the probability distribution and is a measure of the
amount of chaos or of the lack of information about a system.  If
complete information is available,  entropy = 0.  Otherwise, it is
greater than zero. The Shannon entropy is the weighted Boltzmann
entropy.

Consider, for example, a drainage basin schematised by a
channel network in which channels are idealised as single lines and
links are network segments, as shown in Figure 1. A new link is
formed by the junction of no more than two links and sources are
the points further upstream in the network. The magnitude of a link
is the number of sources upstream draining into that link. The
magnitude n of the channel network is that of the outlet link and
equals the number of first order streams. Let each link be associated
with an average elevation and can have one of the m average
elevations, e

i
 , i = 1, 2, 3, ...., m.  Let p

i
  be the probability of a link

having elevation e
i
 . The Shannon entropy S of the drainage basin

system can be expressed as:

   (7)

For a continuous variable, the Shannon entropy can be written as

   (8)
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Principle of maximum entropy

Jaynes (1957) formulated the principle of maximum entropy
(POME) a full account of which is presented in a treatise by Levine
and Tribus (1978) and Tribus (1968).  According to POME, when
making inferences based on incomplete information, the probabil-
ity distribution to be drawn must have the maximum entropy
permitted by the available information expressed in the form of
constraints.  According to the Shannon entropy as an information
measure, the POME-based distribution is favored over those with
less entropy among those which satisfy the given constraints.  Thus,
entropy defines a kind of measure on the space of probability
distributions.  Intuitively, distributions of higher entropy represent
more disorder, are smoother, are more probable, are less predict-
able, or assume less.  The POME-based distribution is maximally
noncommittal with regard to missing information and does not
require invocation of ergodic hypotheses.

Mathematically, we maximise the Shannon entropy:

Maximise    (9)

subject to the available information (or knowledge). This know-
ledge is expressed in terms of constraints, such as:

 (10)

Solution of  Eq. (9), subject to Eq. (10), can be obtained by using
the method of Lagrange multipliers. This yields

 (11)

where:

λ
i
 , i = 0, 1, 2, ..........., m, are Lagrange multipliers, which can be

expressed in terms of constraints given by Eq. (10).

Principle of minimum cross entropy

According to Laplace’s principle of insufficient reason, all out-
comes of an experiment should be considered equally likely unless
there is information to the contrary. For example, taking the
previous example of a drainage basin, the probability of a link
having an elevation is 1/m, if there is no information available on
elevations of links.

Suppose we guess a probability distribution for a random
variable X as Q = {q

1
, q

2
,  q

3
, ......, q

n
 }based on intuition or theory.

This constitutes the prior information in terms of a prior distribu-
tion. To verify our guess, we take a set of observations X = {x

1
, x

2
,

x
3 ,

 ............, x
n
} and compute moments based on these observations.

To derive the distribution P = {p
1
, p

2
,  p

3
 ,.............., p

n
} of X, we take

all the given information and make the distribution as near to our
intuition and experience as possible. Thus, the principle of mini-
mum cross entropy (POMCE) is expressed, when the cross en-
tropy, D(P,Q), is minimised, as:

 (12)

On the basis of intuition, experience or theory, a random variable
may have an a priori probability distribution. Then, the Shannon
entropy is maximum when the probability distribution of the
random variable is that one which is as close to the a priori
distribution as possible. This is referred to as the principle of
minimum cross entropy which minimises the Bayesian entropy
(Kullback and Leibler, 1951).  This is equivalent to maximising the
Shannon entropy. Here minimising D(P,Q) is equivalent to maxim-
ising the Shannon entropy.

Entropy theory as a decision tool in environ-
mental and water resources

Although the entropy theory has been applied in recent years to a
great variety of problems in environmental  and water resources, its
potential as a decision-making tool has not been fully exploited.
What follows is a discussion highlighting this potential. Funda-
mental to the concepts presented below is the need of probability
distributions which can be derived using the entropy theory.

Information of data

One frequently encounters a situation in which to exercise freedom
of choice, evaluate uncertainty or measure information gain or loss.
The freedom of choice, uncertainty, disorder, information content,
or information gain or loss  has been variously measured by relative
entropy, redundancy, and conditional and joint entropies employ-
ing conditional and joint probabilities. As an example, in the
analysis of empirical data, the variance  has often been interpreted
as a measure of uncertainty and as revealing gain or loss in
information. However, entropy is another measure of dispersion -
an alternative to variance. This suggests that it is possible to
determine the variance whenever it is possible to determine the
entropy measures, but the reverse is not necessarily true. However,
variance is not the appropriate measure if the sample size is small.
The advantage of the entropy measure is that it is derived from a
theoretical basis and not a personal preference, and that it takes into
consideration small values with appropriately small weights.

Figure 1
Definition of a simplified drainage network formed by links,

external nodes (sources), and internal nodes. The Horton order of
each link is reported in parentheses. In this figure the network

magnitude n (the number of sources) is 6, the topological
diameter D (maximum topological distance d from the outlet) is 5,

and the Horton order is 3.
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Since entropy is a measure of uncertainty or chaos, and vari-
ance σ2  is a measure of variability, the connection between them is
of interest. In general, an explicit relation between entropy and
variance does not exist. However, for certain distributions, S can be
expressed as a function of σ2 . If two distributions have common
variance, an entropy-based measure of affinity or closeness be-
tween the distributions, A(.,.), can be defined (Mukherjee and
Ratnaparkhi, 1986).  The affinity between two distributions is
defined by the absolute difference between entropies of the two
distributions, which can be shown to be the expectation of the
likelihood ratio:

  (13)

where f
1
  and f

2
 are the two probability density functions.  Eq. (13)

can be cast as:

  (14)

which is the expectation of the likelihood ratio. This measure
differs from Kullback’s minimum distance information criterion.
Likewise, a similarity function is defined as one minus the quotient
of the affinity between any two distributions and the maximum
value of affinity between the distributions:

  (15)

where S
1
 and S

2
 are entropies of the two distributions. Thus, affinity

(distance) is a monotonically decreasing function of similarity.
The similarity factor can be used to cluster or group models.

To measure correlation or dependence between any two vari-
ables,  an informational coefficient of correlation r

0
 is defined as a

function of transinformation, T
0
:

  (16)

  (17)

where:
p(x) and q(y) are marginal probability density functions of x
and y, respectively
p(x, y) is the joint probability density function of (x, y).

The transinformation  expresses the upper limit of common infor-
mation between two variables and  represents the level of depend-
ence (or association) between the variables. This is also referred to
as mutual information.  It represents the upper limit of transferable
information between the variables, and its measure is given by r

0
 ,

which is a better measure of correlation than is the ordinary
correlation coefficient, r.  The ordinary correlation coefficient r
measures the amount of information transferred between variables
under specified assumptions, such as linearity and normality. An
inference similar to that of the ordinary correlation coefficient, r,
can be drawn by defining the amount (in per cent) of transferred
information by the ratio T/T

0
 , where T can be computed in terms

of ordinary r.

Criteria for model selection

Usually there are more models than one needs and a choice has to
be made as to which model to choose. Akaike (1973) formulated a
criterion, called Akaike information criterion (AIC), for selecting

the best model from amongst several models. The information
criterion AIC  provides a method of model identification and  can
be expressed as minus twice the logarithm of the maximum
likelihood plus twice the number of parameters used to find the
best-fit model:

  (18)

where k is the number of parameters in the distribution. In case
there are several models, the model giving the minimum value of
AIC should be selected.  When the maximum likelihood is identical
for two models, the model with the smaller number of parameters
should be selected, for that will lead to smaller AIC and comply
with the principle of parsimony.

Hypothesis testing

Another important application of the entropy theory is in testing of
hypotheses (Tribus, 1969).  With use of Bayes’ theorem in logarith-
mic form, an evidence function is defined for comparing two
hypotheses. The evidence in favor of a hypothesis over its competi-
tor is the difference between the respective entropies of the compe-
tition and the hypothesis under test.  Defining surprisal as the
negative of the logarithm of the probability, the mean surprisal for
a set of observations is expressed as:

  (19)

where x
k
 is the observation in the set of observations. The mean

surprisal for the set of m observations is expressed as:

  (20)

Therefore, the evidence function, EV, for two hypotheses is ob-
tained as the difference between the two values of the  mean
surprisal multiplied by the number of observations:

  (21)

Risk assessment

In common language, risk is the possibility of loss or injury and the
degree of probability of such loss.  Rational decision-making
requires a clear and quantitative way of expressing risk.  In general,
risk cannot be avoided and a choice has to be made between risks.
There are different types of risk, such as business risk, social risk,
economic risk, safety risk, investment risk, occupational risk, etc.
To put risk in proper perspective, it is useful to clarify the distinc-
tion between risk, uncertainty, and hazard.

The notion of risk involves both uncertainty and some kind of
loss or damage.  Uncertainty reflects the variability of our state of
knowledge or state of confidence in a prior evaluation.  Thus, risk
is the sum of uncertainty plus damage:

risk  =  uncertainty + damage   (22)

Hazard is commonly defined as a source of danger and  involves  a
scenario identification (e.g. failure of a dam) and the consequent
measure of that scenario or the measure of the damage.  Risk
encompasses the likelihood of conversion of that source into the
actual delivery of loss, injury, or some form of damage.  Thus, risk
is the ratio of hazard to safeguards:
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  (23)

By increasing safeguards, risk can be reduced but it is never zero.
Since awareness of risk reduces risk, awareness is a part of
safeguards. Qualitatively, risk is subjective and is relative to the
observer. Risk involves the probability of scenario

  
and its conse-

quence resulting from happening of the scenario.  Thus, one can say
that risk is probability and consequence. Risk is related to entropy,
for the latter is employed to derive the probability distribution.

Safety evaluation

Safety has two components:  reliability and probabilistic risk
assessment (PRA).  In reliability, a safety margin or probability of
failure is defined when maximum external loads are specified (i.e.,
design-basis loads such as design discharge). There can be three
domains of safety:  safe domain (no failure); potentially unsafe
domain (failure is possible); and unsafe (failure) domain  (a failure
is certain). The safe and unsafe domains are separated by a limit
state surface. A system will fail if the failure indicator reaches the
limit state surface. If we consider a probability density function of
failure at a value of the failure indicator, then the cumulative
probability of the failure indicator defines fragility.

In PRA, the probability of failure from loads exceeding design
basis loads is considered.  Through introduction of a hazard
function, the probability density function of external loads is
specified.  Consider a hydraulic system with a set of random
parameters.  The system can fail in many ways and every failure
mode can be described with a corresponding failure indicator
involving a number of different failure modes which is a function
of hazard parameters and the random parameters. For example, in
case of an earth dam, depending upon the failure mode, a failure
indicator could be erosion at the bottom, reservoir  water level,
water leakage, displacement, etc.  Hazard parameters could be
extreme rainfall, reservoir level, peak discharge, depth of water at
the dam top, etc.  Structural random parameters could be strengths
of materials, degree of riprap, degree of packing, internal friction,
etc. Entropy factors in safety evaluation through obtaining prob-
ability distributions.

Reliability analysis

Reliability of a system can be defined as the probability that the
system will perform its intended function for at least a specified
period of time under specified environmental conditions.  Different
measures of reliability are applied to different systems, depending
upon their objective.  Indeed, the use of a particular system
determines the kind of reliability measure that is most meaningful
and most useful.  As an example, the reliability measure of a dam
is the probability of its survival during its expected life span.  On
the other hand, the reliability measure associated with hydroelec-
tric power plant components is the failure rate, since the failure of
a plant is of primary concern.  Furthermore, at different times
during the operating life a system may be required to have a
different probability of successfully performing its required func-
tion under specified conditions.  The term “failure” means that the
system is not capable of performing its required function.  We only
consider the case where the system is either capable of performing
its functions or not and exclude the case involving varying degrees
of capability.

If the reliability is defined as the probability of success, that is,
the system will perform its intended function for at least a defined

period of time, then the reliability function can be computed
directly from the knowledge of the failure time distribution.  If the
system is resurrected through repair and maintenance then the
mean failure time is known as the mean (operating) time between
failures. The mean time to failure  is the expected time during which
the system will perform successfully, also expressed as the ex-
pected life.

The rate at which failures occur in a time interval is the failure
rate and is defined by the probability that a failure per unit time
occurs in the interval, provided that a failure has not occurred prior
to the beginning of the interval. The hazard rate (or hazard function)
is defined by the limit of failure as the length of the time interval
approaches zero.  This implies the instantaneous failure rate. The
importance of entropy in reliability engineering lies in its ability to
incorporate prior knowledge in the estimated reliability.

Entropy theory as a modelling tool in
environmental and water resources

A historical perspective on entropy applications in environmental
and water resources is given in Singh and Fiorentino (1992) and
Singh (1997).  Harmancioglu and Singh (1998) discussed the use
of entropy in water resources. In what follows is a discussion of
entropy-based applications.

Derivation of probability distributions

Often needed are frequency or probability distributions that satisfy
the given information. The entropy theory is ideally suited to that
end. Indeed POME has been employed to derive a variety of
distributions some of which have found wide applications in
environmental and water resources.  Many of these distributions
have been summarised in Singh et al. (1986), Singh and Fiorentino
(1992) and Singh (1998). When there are no constraints,  then
POME yields a uniform distribution.  As more constraints are
introduced, the distribution becomes more peaked and possibly
skewed.  In this way, the entropy  reduces from a maximum for the
uniform distribution to zero when the situation is entirely determin-
istic.

Consider, as an example, the case of deriving the instantaneous
unit hydrograph (IUH) for a watershed. The IUH can be considered
as a probability distribution of the time of travel (t). Thus, the time
of travel is construed as the random variable. It is assumed that
rainfall occurs uniformly over the entire watershed and that ab-
stractions, such as surface detention, depression storage, ante-
cedent condition, infiltration, etc., are satisfied by the watershed
first before occurrence of surface runoff. Thereafter, the rainfall
would be the rainfall excess which leads to surface runoff. This
assumption is essential for consideration of the IUH.

When rainfall excess occurs over the space of the watershed,
the rainfall excess starts travelling toward the outlet. Since the
watershed surface has virtually infinite number of points at which
the travel is initiated, the number of travel paths is infinite. Once a
water mass starts to travel, its travel path is pretty much determined
first by the slope and other characteristics of the overland plane and
then by the channel network. Thus, it is not unrealistic to surmise
that the number of values of the travel times is infinite. The water
droplets falling at the watershed outlet will take virtually no time
to reach the outlet, i.e., the travel time is zero. The water droplets
falling at the most remote portion will take the longest path and
consequently the longest time, equal to the time of concentration,
T

c
. Thus, t varies from zero to T

c
 . However, for simplicity of

analysis, it is assumed that t varies from zero to infinity.

r isk
h a za rd

sa feg u a rd s
=
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For deriving the IUH, we invoke our elementary understanding
of watershed hydrology and express it in quantitative terms called
constraints. Since IUH is a probability distribution, it must satisfy

  (24)

Since the time of travel has a range from 0 to T
c
, we may wish to

express an average value of t as

  (25)

It may be recalled that the average travel time is the same as the lag
time of the watershed, which has been found to have a strong
correlation with watershed characteristics, such as area, slope, etc.
(Singh, 1988).

To minimise the impact of extreme values on the value of k, we
may wish to express the average of the logarithmically transformed
values of travel times:

  (26)

If Eqs. (25) and (26) constitute the information we have on the
travel time, then we can invoke POME to derive the probability
density function of t, or IUH. To that end, we maximise the
Shannon entropy Eq. (8), subject to Eqs. (24) to (26). This is an
optimisation problem and can be solved using the method of
Lagrange multipliers. To that end, introducing the Lagrange mul-
tipliers (λ

0
, λ

1
, λ

2
 ), the function, L(f), to be maximised becomes:

  (27)

Taking partial derivatives of L with respect to f and setting the
resulting equation to zero, the following results:

  (28)

Eq. (28) yields:

  (29)

Eq. (29) specifies the entropy-based probability density function.
The Lagrange multipliers (λ

0
, λ

1
, λ

2
 ) are to be expressed in terms

of  Eqs. (24) to (26). To that end, the zeroth Lagrange multiplier,
also called the potential function, is obtained by substituting Eq.
(29) in Eq. (24):

  (30)

Solution of Eq. (30) yields

  (31)

The zeroth Lagrange multiplier is also expressed as:

  (32)

Differentiating Eqs. (30) and (32) with respect to λ
1
 and  λ

2
 and

equating each derivative, respectively, to the constraints in Eqs.
(25) and (26) and solving, we obtain:

  (33)

  (34)

Eqs. (33) and (34) yield:

  (35)

  (36)

where Ψ(b) = d [ln Γ(b)]/db is the digamma function, with b =
1- λ

2
 . Substituting Eq. (35) and (36) in Eq. (29), one obtains:

  (37)

where λ
1 
= 1/a and b = 1- λ

2.  
Eq. (34) is the familiar 2-parameter

gamma distribution. It is least biased and consistent with the data
expressed in terms of the constraints.

If, for example, one also has an idea about the time taken by the
antecedent condition to be satisfied. Let that time be t

0
 . This can be

thought of as the time to ponding. Then the constraints can be
written as:

  (38)

  (39)

 Following the same procedure, the resulting IUH equation would
be:

  (40)

which is the Pearson type 3 distribution.

Parameter estimation

It is desirable to estimate parameters of a probability distribution in
terms of the given constraints (Jaworski, 1987). The entropy theory
accomplishes precisely that. Singh (1998) has described  POME-
based estimation for a number of probability distributions used in
environmental and water resources. He has also discussed a com-
parison of  the POME method with the methods of moments,
maximum likelihood estimation, and some others. The comparison
shows that the POME method is either comparable to or better than
other methods.

As an example, consider the case of the gamma distribution
used in hydrology. As an IUH model, it is frequently written as:

  (41)

where k is the reservoir lag time and n is the number of linear
reservoirs. Eq. (41) is was proposed by Nash (1958) and is a
response of a cascade of equal linear reservoir subjected to an
instantaneous burst of rainfall excess having a unit volume.
This equation has two parameters k and n, which need to be
estimated. Singh and Rajagopal (1986) developed an entropy-
based parameter estimation, called parameter space expansion
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method. For Eq. (41), this method works as follows. First, we
determine the constraints on which Eq. (41) is based. This is
obtained by substituting Eq. (41) in Eq. (24):

  (42)

The constraints are:

  (43)

  (44)

The Pome-based formulation of the distribution is given by:

  (45)

which is the same as Eq. (29). Therefore,

  (46)

Singh and Singh (1985) applied Eqs. (45) and (46) to a number of
rainfall-runoff events from a large experimental rainfall-runoff
facility. The rainfall intensity was uniform in both time and space.
Parameters n and k were estimated by POME and also by the
method of moments (MOM), method of cumulants (MOC), maxi-
mum likelihood estimation (MLE), and method of least squares
(MOLS). Using the parameter values estimated by these methods,
the unit hydrographs were generated and convoluted with appro-
priate rainfall hyetographs to generate runoff hydrographs. For a
sample events, observed and computed runoff hydrographs are
shown in Fig. 2. For this event, POME, MOM and MOLS were
comparable. This was also true for other events. Thus, Pome offers
a competitive method of parameter estimation.

Maximum entropy-spectral analysis for flow
forecasting

Burg (1968) defined entropy in terms of power spectrum W(f),
where f is frequency. For a stationary stochastic process x(t), the
Burg entropy, H(f), is expressed as:

  (47)
where w is the frequency band. The spectrum W(f) can be written
in terms of the Fourier series as:

  (48)

where ∆t is the sampling time interval, i = (-1)0.5 , and ρ(n) is the
autocorrelation defined as:

  (49)

where m is lag. It has been shown (Krstanovic and Singh, 1993a,
b) that maximisation of Eq. (47) is equivalent to maximisation of:

  (50)

subject to constraints defined by Eq. (49). Substitution of Eq. (48)
in Eq. (50) and maximisation leads to MESA.

The maximum entropy spectral analysis (MESA), introduced
by Burg (1975), has several advantages over conventional spectral
analysis methods.  It has short and smooth spectra with high-degree
resolutions.  The statistical characteristics which are used in
stochastic model identification can also be estimated using MESA,
thus permitting integration of spectral analysis and computations
related to stochastic model development. Jaynes (1982) has shown
that MESA and other methods of spectral analysis, such as Schuster,
Blackman-Tukey, maximum likelihood, Bayesian, and auto-
regressive (AR, ARMA or ARIMA) models are not in conflict, and
that AR models are a special case of MESA. Krstanovic and Singh
(1991a,b) employed MESA for long-term streamflow forecasting.
Krstanovic and Singh (1993a,b) extended the MESA method to
develop a real-time flood forecasting model. Figure 3 shows
streamflow regeneration for River Orinoco for the case of forward
forecastinmg (Singh and Krstanovic, 1991b). This figure clearly
shows a close agreement between observed and MESA-computed
streamflows.

Basin geomorphology

Entropy plays a fundamental role  in characterisation of landscape.
Using the entropy theory for morphological analysis of river basin
networks, Fiorentino et al. (1993)  found the connection between
entropy and the mean basin elevation as:

  (51)

Figure 2
A comparison of observed and computed runoff hydrographs for
event 3. The methods of parameter estimation are MOM, MOC,

MLE, POME, and MOLS
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where:
y is the mean basin elevation,
S is entropy, and
a and b are parameters having physical significance.

Similarly, the relation between the fall in elevation from the source
to the outlet of the main channel and the entropy  of its drainage
basin was found to be linear:

  (52)

where F is the fall in the elevation from the source to the outlet of
the main channel, and α and β are parameters. In a similar vein, the
relation  between the elevation of a node and the logarithm of its
distance from the source was found to be:

  (53)

where:
y

0 
is the elevation of the source of the channel

yδ 
is the elevation of the downstream node at a distance from

the source
D is the topological diameter
F is the fall in elevation from the source to the outlet.

When a basin was ordered following the Horton-Strahler ordering
scheme, a linear relation was found between the drainage entropy
and the basin order:

  (54)

where R
L
  is the stream length ratio, and S is the order of the basin.

This relation can be characterised as a measure of the basin network
complexity. The basin entropy was also found to be linearly related
to the logarithm of the magnitude of the basin network:

  (55)

This relation led to a non-linear relation between the network
diameter and magnitude where the exponent was found to be
related to the fractal dimension of the drainage network:

  (56)

where:
c = 1.75, and
n is the magnitude of the drainage basin.

Fiorentino et al. (1993) verified Eqs. (51) to (56) on a number of
basins in Italy and close agreements between entropy-based deri-
vations and observed geomorphologic variables. Figure 4 shows a
relation between the average elevation and Shannon entropy for
three subbasins whose outlets lie on the main channel. In the figure
the x-axis denotes entropy and the y-axis the average elevation..

Design of hydrologic networks

The purpose of measuring networks is to gather information in
terms of data. Fundamental to evaluation of these networks is the
ability to determine if the networks are gathering the needed
information optimally. The entropy theory is a natural tool to make
that determination. Krstanovic and Singh (1992a,b) employed the
theory for space and time evaluation of rainfall networks in
Louisiana.  The decision whether to keep or to eliminate a rain-
gauge was based entirely on reduction or gain of information at that
gauge. In this manner the best combination of rain-gauges was
suggested.  Yang and Burn (1994) employed a measure of informa-
tion flow, called directional information transfer index (DIT),
between gauging stations in the network.  The DIT is defined as:

  (57)

where:

Figure 3
Streamflow regeneration for River Orinoco (forward forecasting)

Figure 4
Average elevation versus Shannon entropy of subnetworks
whose outlets lie on the main channel and respective least

squares lines, for (a) Arcidiaconata, (b) Lapilloso, and
(c) Vulgano basins.
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S is the entropy (or information content) of the station X
T is the transinformation (or mutual information) between
station X and Y
S

lost
 is the information lost (or the amount of information

transmitted).

The value of DIT varies from 0 where no information is transmitted
and the stations are independent to one where no information is lost
and the stations are fully dependent.  Between two stations of one
pair, the station with higher DIT value should be retained because
of its greater capability of inferring information at the other side.

Note that DIT is not symmetrical, for DIT (X,Y) = T/S(X)
for station X is, in general, not equal to DIT (Y, X) = T/S(Y) for
station Y. DIT (X, Y) describes the fractional information inferred
by station X about station Y, whereas DIT (Y, X) is the fractional
information inferred by station Y about station X. Between two
stations of one pair, the station with higher DIT value should be
retained because of its greater capability of inferring information at
other stations. The concept of DIT can be extended to regionalisation
of networks.

Reliability of water distribution systems

Entropy-based measures have been developed for evaluation of
reliability and redundancy of water distribution networks.  These
measures accurately reflect changes in the network reliability.
However, the redundancy of a network also depends on the ability
of the network to respond to the failure of one of its links. Awumah
et al. (1990) applied these measures to evaluate reliability/redun-
dancy of a range of network layouts and showed that the entropy-
based redundancy measure was a good indicator of the relative
performance implications of different levels of redundancy.

The network redundancy (or reliability) measure of a water
distribution system is expressed  as:

  (58)

where:
R is the network redundancy
Q

0
 is the sum of flows in all links in the network

Q
j
 is total flow into node j

N is the number of nodes.

R
j 
is expressed as:

  (59)

where:
q

ij 
is the flow in the link from node i to node j

Q
j 
is the set of nodes on the upstream ends of links incident upon

node j.

The right side of Eq. (58) is the sum of two terms. The first terms
expresses an algebraic sum of weighted entropy measure at each of
the constituent nodes, and the second term defines the redundancy
among the N nodes. In a similar manner, Awumah et al. (1990)
extended the analysis to take account of the ability of a network to
responds to failure of one of its links.

Subsurface hydrology

In groundwater engineering, it is often true that few measurements
of aquifer and flow parameters, such as  hydraulic conductivity, are

available, and there is a large degree of uncertainty in the measured
values of fundamental flow parameters. Woodbury and Ulrych
(1993) used the principle of minimum relative entropy (POMRE)
to determine these parameters. Barbe et al. (1994) applied POME
to derive a probability distribution for piezometric head in one-
dimensional steady groundwater flow in confined and unconfined
aquifers, subject to the total probability law and the conservation of
mass. For example, the cumulative probability distribution (cdf) of
piezometric head h in a confined aquifer was found to be:

  (60)

where:
h

0 
is the piezometric head at the lower end of the aquifer

at x = 0
h

u 
is the head at the upper end at x = L

L is the length of the aquifer.

The probability density function of h, f(h),  is:

  (61)

which is a uniform distribution. This is based on the assumption
that nothing is known about the distribution of head and therefore
there is no constraint.

From a few measurements of transmissivity (T) based on
pumping tests and of piezometric head,  Bos (1990) employed
POME and Bayes’ theorem to derive the probability distribution of
transmissivity.

Application in hydraulics

Yang (1994) showed that the fundamental theories in hydrodynam-
ics and hydraulics can be derived from variational approaches
based on maximisation of entropy, minimisation of energy, or
minimisation of energy dissipation rate. Chiu and Murray (1992)
applied POME to determine the probability distribution of velocity
in non-uniform open channel flow:

  (62)

where:
u is the velocity that monotonically increases with y
m is an entropy parameter
u

m
 is the maximum velocity in a channel cross-section

y
m
 is the maximum value of y

y
0
 is the minimum value of y.

The entropy-based velocity distribution fits experimental data very
well and is of great practical value in hydraulic modelling.

Water quality assessment

Environmental pollution can be perceived as a result of discharge
of material and heat into the environment (water, air, and/or soil)
through human activity of production and consumption.  When a
compound is added to pure water, the compound will dissolve and
diffuse throughout water.  The dissolution and diffusion imply an
increase in the entropy of the solution (by virtue of its definition and
the second law of thermodynamics) and an increase in the degree
of pollution.  This suggests that an increase in entropy implies water
pollution.  Water is extensively used in cooling, washing, disposal
of waste material, and dissipation of waste heat.  Water pollution
can then be viewed as water initially containing a low value of
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entropy being eventually discharged with high value of entropy
which, in turn, increases the entropy of the environment.  Thus,
entropy can serve as a comprehensive index for assessment of
pollution control.  To extend the argument further, the diversity of
species of organisms in water or the diversity index (DI) is related
to the degree of pollution.  In general, the number of species
decreases as the degree of pollution increases.  The DI can be
calculated from the  entropy theory as:

  (63)

where p
i 
is the number of organisms of species i divided by the total

number of organisms present in the water. Thus, DI can be used to
evaluate water quality of a water body in time and space, as well as
to compare water quality of different water bodies. Because en-
tropy increases with pollution, energy is required to abate pollu-
tion, remove pollutants from water and purify it and in turn
decrease entropy of the polluted water. This suggests that the
efficiency of water treatment systems can be expressed by the
entropy production and thus their thermodynamical efficiency can
be evaluated.

Design of water quality networks

The entropy theory, when applied to water quality monitoring
network design, yields promising results, especially in the selec-
tion of technical design features, such as monitoring sites, time
frequencies, variables to be sampled, and sampling duration.
Furthermore, it permits a quantitative assessment of efficiency and
benefit/cost parameters. Harmancioglu and Singh (1998) reviewed
the advantages as well as the limitations of the entropy method as
applied to the design of water quality monitoring networks. Given
an observed change in water quality levels at a downstream
location, the entropy-based  formulation predicts the probabilities
of each possible water quality level at each of the upstream stations.

Optimisation

Optimisation is widely needed in modelling as well as decision
making in environmental and water resources. The entropy theory
is a potentially powerful tool in constrained optimisation as shown
by  Templeman and Xingsi (1987). This is a promising new area of
research.

Implications for developing countries

One of the main problems plaguing environmental and water
resources development in developing countries is the lack of data
or lack of sufficient data.  Frequently, either the data are missing or
it is incomplete, or it is not of good quality or the record is not of
sufficient length.  As a result, more often than not, it is the data that
dictate the type of model to be used and not the availability of
modelling technology.  Many conventional models are not appli-
cable when their data needs are not met.  Furthermore, subjective
information such as professional experience, judgment, and thumb
or empirical rules have played a significant role in hydrologic
practice in many developing countries. Conventional models do
not have the capability to accommodate such subjective informa-
tion, although such information may be of good quality or high
value.  The potential for application of the entropy theory is
enormous in developing countries, for it maximises the use of
information contained in data, however little it may be, and it
permits use of subjective information.  Thus, in the face of limited

data the entropy theory results in a reliable solution of the problem
at hand.  Furthermore, it offers an objective avenue for drawing
inferences as to the model results.  In addition, the entropy-based
modelling is efficient,  requiring relatively little computational
effort and is versatile in its applicability across many disciplines.

Concluding remarks

The entropy theory is versatile, robust, and efficient.  It permits
determination of the least-biased probability distribution of a
random variable, subject to the available information.  Further-
more, it suggests if the available information is adequate or not and
if not, then additional information should be sought.  In this way it
brings the model, the modeller, and the decision-maker closer.  As
an objective measure of information or uncertainty, the entropy
theory allows to communicate with nature as illustrated by its
application to design of data acquisition systems, design of envi-
ronmental and hydrologic networks, and assessment of reliability
of these systems or networks.  In a similar vein, it helps better
understand physics or science of natural systems such as landscape
evolution, geomorphology, and hydrodynamics.  A wide variety of
seemingly disparate or dissimilar problems can be meaningfully
solved with use of entropy.
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