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Abstract

A methodology is developed for determining a robust optimal strategy for a groundwater hydraulic control problem posed within
the framework of stochastic multi-objective optimisation. The methodology explicitly considers uncertainty in hydraulic
conductivity and allows decision- makers (DMs) to evaluate trade-offs among three conflicting objectives: aquifer yield, investment
and operational cost, and recourse cost (penalties) incurred if the stipulated constraints are violated. The model includes a two-stage
decision process in which the first-stage decision (commonly referred to as “here and now”) on how many wells, their pumping rates
and their locations is made and implemented immediately without the foreknowledge of the outcome of the uncertain parameters.
At a later stage, when the uncertain parameters become known, a second-stage decision is taken using the updated data. Applicability
of the methodology is demonstrated through a hypothetical (but realistic) example. A post-optimality Monte Carlo analysis is
conducted to examine the performance of the model in terms of robustness (stability). Preliminary results show that robust
optimisation can be useful in designing a strategy which performs reasonably well whatever the outcome of the uncertain
parameters.

Introduction

In recent years, the use of management models has considerably
grown in connection with the analysis of subsurface water re-
sources as suggested by the large number of research papers in the
literature. This scenario is understandable especially when one
looks at the ever-increasing water consumption rates in agricul-
tural, industrial and civil establishments. Closely related to this fact
is the realisation that the available groundwater resources are
limited to some extent and are to be carefully managed with the aid
of appropriate scientific tools if we want to put them to the most
beneficial use. To this end, numerical models have been used in
combination with optimisation techniques to design optimal strat-
egies. One of the most challenging problems associated with the
simulation-optimisation approach to groundwater quantity man-
agement, especially when confronted with a problem encompass-
ing multiple conflicting objectives, is how to incorporate the effects
of flow modelling uncertainty into the optimal decision-making
process. To date, most aquifer management models used to design
optimal groundwater management in a multi-objective environ-
ment have been assumed to be deterministic. However, just like any
other resource management, groundwater management is gener-
ally carried out in an environment of uncertainties. For example,
natural geological formations that form aquifers are naturally
heterogeneous. It is due to this heterogeneity, in combination with
lack of data to fully characterise the aquifer, that solutions based on
deterministic methods are put into question.

The objective of this paper is, therefore, to present a regional
groundwater planning model which explicitly considers uncer-
tainty in hydraulic conductivity in a multi-objective optimisation
problem. The solution method is predicated on robust optimisation
(which is essentially an extension of classical stochastic program-

ming), which incorporates the DM’s preferences (in terms of risk
of penalties due to violation of constraints) and allows considera-
tion of nearly feasible solutions in a multiple objective framework.
This approach has been used by Wagner et al. (1992).

Aquifer management models that combine simulation with
optimisation help in understanding how social and economic
forces interact with the water resource allocation. Just as a simula-
tion model is a tool to understand the physical/chemical behaviour
of an aquifer system, a management model can be thought of as a
tool, which provides insight into the economic and social conse-
quences of institutional changes. The combination of these two
methods has been achieved in at least two ways; through the
response matrix approach, and through the embedding approach.
In the response matrix approach, the influence of a unit change in
an independent decision variable such as pumping or recharge at a
pre-selected well location upon a variety of dependent variables
like drawdown and velocity at specified observation points, is
determined. Superposition is then performed to calculate their total
response at specified points resulting from all decision variables.
Its main drawback is the number of simulations required to gener-
ate the responses as well as recalculate the response matrix when
the boundary conditions and well locations change. This approach
has been used by Maddock and Lacher (1991); Heidari (1982);
Wanakule et al. (1986);  Willis and Finney (1985); and Van Tonder
et al. (1998). Other applications of this method have been made by
Gorelick and Remson (1982); Theodossiou and Tolikas (1995);
Galeati and Gambolati (1988); Maddock (1972); Herrling and
Heckele (1986); and Willis and Liu (1984). In the embedding
approach, numerical approximations of the flow equations are
included directly as constraints in the optimisation model.
Discretisation is based on either the finite difference method or the
finite element method. In this method, the unknown groundwater
variables (heads and source/sink) become decision variables in the
optimisation method. This method, not only solves the problem
once (as opposed to the response matrix approach), but also
provides lots of information regarding the behaviour of the aquifer.
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Nevertheless, this method has a disadvantage in that it results to a
large program (Gorelick, 1983). This approach has been used by
Gharbi and Peralta (1994); Yazicigil and Rasheeduddin (1987);
Magnouni and Treichel (1994); Aguado and Remson (1980); Alley
et al. (1976); and Prathapar (1989).

In the planning of most water resource systems, there are many
possible objectives to consider, and the future performance of each
alternative is uncertain as a result of uncertainty in input para-
meters. Solution methods, which adopt a single objective ap-
proach, presuppose that the DM’s preferences are satisfactorily
addressed through the considered single objective. However, it can
be argued that in decision contexts, numerous, usually conflicting
objectives are considered, hence in such situations, the optimisation
problem should be posed within a multi-objective framework.
Within this framework, the analyst seeks to identify the Pareto set
(set of non-inferior solutions). This set is then used to aid the DM
state his preferences. Among the works addressing groundwater
management in a multi-objective framework is that of Kaunas and
Haimes (1985); Willis and Liu (1984); Shafike et al. (1992); Gharbi
and Peralta (1994); and Magnouni and Treichel (1994).

Like any other resource management, groundwater manage-
ment is generally carried out in an environment of uncertainties.
Thus, the question of reliability of the model output is of paramount
importance. Heterogeneity in natural aquifer formations is widely
recognised as one of the major factors contributing to uncertainty
in predicting groundwater flow behavior and management strate-
gies.

Several methods have been used in an attempt to deal with
uncertainty in parameters. They include post-optimality sensitivity
analysis (e.g. Aguado et al., 1977; Gorelick, 1982; Bredehoeft and
Young, 1983), chance constrained programming (see Tung, 1986;
Mayer, 1992) and stochastic optimisation with recourse method as
presented by Wagner et al. (1992). Recent works on stochastic
modelling include that of Van Leeuwen et al. (1998), Loll and
Moldrup (1998), and Huang and Mayer (1997).

In this paper, we present a methodology for solving multi-
objective problems when the aquifer parameters are considered
uncertain. Applicability of the methodology is demonstrated through
a hypothetical example.

Problem formulation

We consider the spatially variable hydraulic conductivity, k, to be
the only uncertain parameter. All other parameters are assumed to
be known. Uncertainty is included in the optimisation formulation
(Eqs. (1-6)) by sampling the stochastic field of continuous hydrau-
lic conductivity values. The sampling is done by obtaining a set of
realisations of this distribution, with every realisation having a
distinct value for the hydraulic conductivity of each cell. If we
denote the realisations (maps) of the hydraulic conductivity, k, as
ω, ω = 1,...,Ω, then each realisation, ω, will result to different
responses, a

i,j,ω (a
i,j,ω 

 are components of the response matrix, Aω)
and hence different optimal solutions. Since this optimisation
problem (Eqs. (1) - (6)) is stochastic because the constraints are
stochastic, we cannot guarantee that a selected management plan
will actually not violate the stipulated constraints. If  ΣNw

j=1
a

i,j,ω 
p

j,

i = 1,…, Nc (Nc is the number of control points and p
j
 are the

decision variables) are the computed drawdowns due to a selected
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) -

b
i
) and hence a recourse action has to be taken to decrease the

damage caused by this violation. Associated with this recourse is
a cost to carry out the recourse action.

Ideally, because of the uncertainty in hydraulic conductivity, it
is difficult to design a solution stable enough to safeguard against
violation of constraints, whatever the outcome of the uncertain
parameters. However, not to over-emphasise on feasibility, a DM
can choose to allow optimal solutions having slight violations by
penalising them softly (or not penalising them at all) and discour-
age solutions having extreme violations by imposing heavy penal-
ties. A linear-quadratic penalty function as shown in Fig. 1 is
suitable for this purpose (Rockafellar and Wets, 1986). The shape
of this curve allows the DM great flexibility in that he can control
the shape of the entire function through choice of parameters p and
q. This means that based on the analyst’s results for various values
of parameters p and q, the DM can choose a solution considering
both the optimality and penalties, thus determining the overall
shape of the curve.

The parameters p and q are related to the penalties ρ(v
i,ω;

p,q)
using the relationships:

If  ρ
i,ω  

=  ρ (v
i,ω;

p,q) expresses the penalty associated with the
violation v

i,ω 
 at the ith control point, in order to minimise the cost

of violation of the stochastic constraints, a recourse can be carried
out by means of a supplementary objective function. This supple-
mentary objective function (noted by Z

3
) which considers the

economic consequences of the violations of the constraints can be
written as [(1/ Ω)  

 
ΣΩ

ω=1
 ΣNc

i=1 
ρ

i,ω]. This approach requires calcula-
tion of the violations for all possible maps of the uncertain param-
eters, resulting to a deterministic program which is larger than the
initial stochastic program. Wagner et al. (1992) has used this
approach to solve a single objective optimisation problem. The
formulation of the multi-objective problem can then be written as:

  (1)

Figure 1
Linear-quadratic penalty function
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  (2)

  (3)

subject to:

  (4)

  (5)

  (6)

where:
N

W
 is the number of pumping wells

N
c
 is the number of control points

λ 
j
 is daily cost of pumping and transportation in monetary units

per unit volume per unit lift for lacation j
p

j
 is pumping rate in cell j, j=1,…,N

w

r
j
 is the pumping lift given by (H-h

j
)

H is height of ground surface (measured from bottom of
aquifer)
h

j
 is the head in pumping well j

a
i, j

 is response at cell i due to pumping in cell j
b

i
 is the constraining value at control point i

W
D
 is total water demand.

Objective Z
1
 addresses the issue of cost of pumping and delivery of

water, objective Z
2 
ensures maximum extraction of water while

objective Z
3 
ensures minimum penalties due to violation of con-

straints. The constraints place limitations on maximum drawdowns,
minimum water demand and minimum pumping rate (i.e. Eqs. (4)
to(6)). Different objectives and constraints can as well be specified
depending on the problem at hand. However, for this paper, we
consider the above objectives and constraints. Note that the con-
straints are stochastic because of their dependence on realisation ω.
The problem, therefore, involves identifying a solution which
minimises the cost of pumping and transportation, maximises the
pumping rates, and at the same time minimises the recourse costs
(penalties) subject to the specified constraints (Eqs. (1) to (6)).

Methodology

Solution methods for multi-objective programs aims at arriving at
a representation of the non-inferior set of solutions for considera-
tion by a DM. This set of non-inferior solutions is usually large, and
it is not immediately clear to the DM on how to choose one of them
for implementation. Consequently, decision aid techniques, also
known as decision support systems (DSSs), are required to assist
the DM to identify one of the solutions as the most preferred
compromise for implementation. The DSS used in this work is
predicated on utility theory, which involves a procedure which
aims at finding a value function as compatible as possible with the
subjective ranking defined by the DM on a set of reference
alternatives. The DSS requires a DM to subjectively rank a set of
reference solutions presented to him by the analyst. The ranking is
done considering both the information provided by the analyst and
any other information (criteria) the DM might consider important
even though such criteria may not be explicitly stated. Using this
subjective ranking, a value function consistent with the ranking is

determined. This value function is applied to all non-inferior
solutions to obtain a global ranking. The alternative solution which
ranks first is taken as the most satisfactory for implementation. For
more details see Kostkowski and Slowinski (1996).

To solve the stochastic problem, the groundwater flow simula-
tion software, MODFLOW (McDonald and Harbaugh, 1984), and
a single objective optimisation software, MINOS (Murtagh and
Saunders, 1995), are used. The simulation software is used to
generate the response matrix (constraints for the optimisation
problem) while MINOS together with user written programs are
used to solve the multi-objective optimisation problem. To assist
the DM identify one of the non-inferior solutions as the most
preferred, UTA+ software (Kostkowski and Slowinski, 1996), a
decision support system, is used. The methodology used to solve
the optimisation problem defined by Eqs. (1) to (6) is developed
systematically starting with a deterministic scheme through multi-
ple scenario scheme as follows:

Deterministic scheme

This scheme refers to a case when the parameters are assumed to
be known without error, hence the problem is deterministic. When
no data are available, this problem can be examined by solving it
with all hydraulic conductivities set to their expected value result-
ing to a homogeneous problem (since the hydraulic conductivity
distributions are all assumed to have the same mean). With avail-
ability of data, the problem can be formulated in two ways: the
simplest way is to consider it as homogeneous by taking the mean
of all available measurements, and considering it as heterogeneous
by assuming that each or a group of the available sparse data
represents a certain area of the model domain.

Scenario with second-stage decision scheme

Scenario with second-stage decision arises from a situation where
a first-stage (“here and now”) decision is made and implemented
based on the available information about the uncertain parameters.
At a later stage when more information on the uncertain parameters
becomes available, a second-stage decision is made using the
updated information so as to minimise violation of constraints. This
scheme results to as many sets of optimal solutions as the number
of realisations (maps) considered. As such, the choice of which
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Flow diagram for a
deterministic case
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plan to implement remains a formidable task to the DM, hence the
main disadvantage of scenario analysis in general. Nevertheless,
solutions from this scheme are certainly better than the determin-
istic scheme because they are evaluated taking uncertainty of the
parameters into consideration. They, therefore, provide informa-
tion on how the optimal solution changes as the uncertain para-
meters assume different values. A flow diagram for the numerical
scheme is shown as Fig. 3.

Multiple scenario scheme

In this scheme, a “here and now” plan is implemented based on the
available information (deterministic scheme). For all realisations
of the uncertain parameter, violations and hence penalties are
calculated. The matrix of penalties is then used to formulate a

penalty objective function, i.e. Z
3
 (see Eq. 3) which is then included

in the set of objective functions and re-optimisation of the problem
done. A flow diagram for the numerical scheme is shown as Fig. 4.

Application of methodology to an example

The proposed methodology is applied to a hypothetical example
modified from that of Magnouni and Treichel (1994). The example
has the following dimensions and properties:

An island of 30 km x 30 km.
Groundwater resources are accumulated in a single confined
aquifer of thickness 35 m that will be used for water supply to
a distribution centre situated at the middle of the island.
The aquifer is heterogeneous with the spatial distribution of
hydraulic conductivity fields of mean value of 2.25 x 10-3 m/s,
a standard deviation (log) of 0.5 and a correlation length of
3 000 m in x-direction and 7 500 m in y-direction.

Objectives

Three objectives are considered and include:
• Maximisation of total water pumping rates
• Minimisation of operating costs (pumping and transportation

costs),
• Minimisation of recourse costs due to violation of constraints

resulting from uncertainties in the aquifer parameters.

Constraints

The DM expresses constraints on minimum water levels in an
ecological protection zone (Fig. 5), flow direction along the aqui-
fer/ocean border to avoid salt-water intrusion and maximum pump-
ing yields at each cell as follows:

On the border of the island, the hydraulic head is equal to sea
level. While in the other nodes it is bounded by bottom of the
aquifer.

In the specified ecological protection zone, the minimum
water level equals 5 m a. s. l. To avoid salt-water intrusion, head
in cells next to the ocean are not allowed to fall below 0.2
m a. s. l.

There is minimum water demand of 3 m3/s at the distribu-
tion centre which should be satisfied. Pumping rates from

Figure 3
Flow chart for scenario analysis with second-stage decision

Figure 4
Flow chart for multiple scenario analysis

Figure 5
Ecological protection zone
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potential wells (shown in Fig. 6) are limited to a maximum
yield of 1.5 m3/s.

Unit costs of exploitation, defined at each potential well are
calculated as a combination of the water pumping costs and
water transport costs which are dependent on the distance from
the well to the distribution center. The costs are assumed to be
higher towards the boundaries. The aggregated unit cost coef-
ficients at each cell take on values from 0.1 at the centre and
increase at a rate of 0.1 for every 200 m distance.

The problem is to find the location of wells and the corresponding
pumping rates, satisfying all or nearly all the constraints on the
hydraulic heads and pumping rates, and the minimum demand at
the distribution center. Moreover, the solution should be the best
compromise among the multiple conflicting criteria in an environ-
ment of uncertain spatial hydraulic conductivity values.

Discussion of results

For this example, 20 unconditional realisations (maps) of hydraulic
conductivity were generated using a mean value of 2.25×10-3 m/s,
a standard deviation (log) of 0.5 and a correlation length of
30 000 m in x-direction and 7 500 m in y-direction. Each of the
realisations is assumed equally likely to exist in reality. The penalty
function parameters used are p = 0, and q = 0.2 (see Fig. 1), i.e. the
penalty is a linear function of violation.

Deterministic scheme

For this scheme, 20 non-inferior solutions were generated (see
Table 1). For purposes of discussion on the application of UTA+ (a
DSS), a subset of seven representative solutions was arbitrarily
chosen and given subjective ranks. Note that ordinarily, the set is
presented to a DM who is then asked to articulate his preferences
in the form of ranking them. Table 2 shows these reference
solutions with their subjective ranks.

Using the information on subjective ranking on the reference
set, and two linear segments for cost-marginal value function and
one linear piece for the volume-marginal value function, a global
value function (using a DSS) compatible with the subjective
ranking with Kendall’s coefficient value of 0.94 was found.

Kendall’s coefficient is a measure of consistency between the
subjective ranking and ranking due to the estimated value function.
Note that, it is only when the Kendall’s coefficient is equal to 1, that
the estimated value function exactly fits the subjective ranking.
Otherwise for a Kendall coefficient different from 1, it means that
the ranking due to the estimated global value function does not rank
the alternatives in exactly the same way as the DM. Therefore,
some alternatives may end up being ranked differently (inter-
changed). The high value of Kendall’s coefficient obtained indi-
cates that the assessed value function is acceptable. This is because
the ranking of the alternatives due to this value function is fairly
consistent with the given one. This value function was applied to
the whole set of pre-generated non-inferior solutions, resulting to
a global ranking of the efficient solutions as shown in Table 3.

The DSS therefore identified solution DSOL11, as the most
preferred one for implementation (Table 3). This solution resulted
to an optimal objective function value of 3.902 MU (MU =
monetary units), and pumping rates of p

4 
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13 
=

0.596, p
14 

= 0.074, p
21 

= 0.466, p
27 

= 1.50, p
28 

= 0.240 and p
35 

= 0.506
m3/s. This optimal pumping scheme is shown as Fig. 7. As is
evident from this figure, the pumping wells are generally located at
the north-east side of the model domain, away from the ecological
protection zone.

Scenario with second-stage decision

The “here and now” plan to be implemented is similar to that of the
deterministic case (solution DSOL11). Then, depending on the
outcome of the uncertain parameter, a second-stage decision is
taken to minimise the penalties. Results for scenario analysis with
second-stage decision corresponding to the 20 conductivity maps
result in optimal objective function values ranging from a mini-
mum value of 4.079 MU to a maximum value of 4.497 MU (see
Table 4). Compared with the objective function value of the
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Figure 6
Location of potential pumping wells

TABLE 1
GENERATED NON-INFERIOR SOLUTIONS

Solution Cost Volume
 No.

DSOL1 1.384 3.000
DSOL2 1.617 3.281
DSOL3 1.852 3.563
DSOL4 2.096 3.844
DSOL5 2.345 4.126
DSOL6 2.593 4.407
DSOL7 2.848 4.688
DSOL8 3.107 4.970
DSOL9 3.365 5.251
DSOL10 3.628 5.533
DSOL11 3.902 5.814
DSOL12 4.181 6.096
DSOL13 4.467 6.377
DSOL14 4.768 6.658
DSOL15 5.080 6.940
DSOL16 5.400 7.221
DSOL17 5.724 7.503
DSOL18 6.053 7.784
DSOL19 6.386 8.065
DSOL20 6.726 8.347

TABLE 2
REFERENCE SOLUTION

SET

Solution     Rank

DSOL1 5
DSOL4 3
DSOL8 1
DSOL10 2
DSOL13 4
DSOL15 6
DSOL20 7
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deterministic scheme (3.902 MU), all the solutions for the scenario
with the second-stage decision scheme have higher initial invest-
ment cost than the deterministic case. Thus, it can be argued that the
price to pay for a more robust solution, which will be able to
withstand slight variations of the system parameters is the differ-
ence in investment cost between the deterministic solution and the
scenario with second-stage decision solutions, which range be-
tween a minimum value of 0.177 (i.e. 4.079-3.902) and 0.595 MU
(i.e. 4.497-3.902). The optimal pumping schemes corresponding to
the 20 conductivity maps are different from one another as well as
from the implemented deterministic solution (Table 4).

As mentioned before during our discussion on methodology,
when dealing with scenario analysis (i.e. scenario with second-

stage decision), the question of which optimal plan to choose
among the many scenarios for implementation is not very obvious.
This is because, as Table 4 demonstrates, there are changes in the
optimal pumping strategy from realisation (map) to realisation
which involves changes in well locations and pumping rates. This
means that the optimal scheme corresponding to, for example,
Map19 (worst-case scenario), will not necessarily satisfy the
constraints for all realisations, because individual realisations
control individual flow patterns and consequently dictate optimal
well placement and pumping patterns. This limitation was also
pointed out by Wagner and Gorelick (1989).

Multiple scenario results

The optimal solution for multiple scenario scheme is shown in Fig.
8 with the objective function taking on a value of 4.749 MU.
Comparison of the optimal objective function values of the sce-
nario with second-stage decision scheme (see Table 4, column 2)
and that of multiple scenario scheme of 4.749 MU suggests that the
latter scheme is more expensive than the former. Compared with
the optimal pumping strategy of the deterministic scheme, the
optimal pumping strategy of the multiple scenario scheme is more
spread out (see Fig. 7 and Fig. 8)indicating that solutions obtained
by assuming that the parameters are perfectly known are quite
different from those obtained when the problem is posed within a
stochastic framework.

Robustness of the multiple scenario solution

Ideally, the solution of the multiple scenario scheme would require
consideration of a very large set of realisations (maps), if one is to
gain a thorough knowledge of its stability (robustness) against the
effects of uncertainty due to spatial variability of the hydraulic
conductivity. To achieve such a solution, enormous computational
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Figure 7
Optimal pumping scheme (DSOL11)

TABLE 3
FINAL RANKING

Solution Utility value Rank

DSPL11 0.885 1
DSOL10 0.872 2
DSOL12 0.862 3
DSOL9 0.859 4
DSOL8 0.846 5
DSOL7 0.833 6
DSOL6 0.821 7
DSOL5 0.808 8
DSOL4 0.795 9
DSOL13 0.794 10
DSOL3 0.782 11
DSOL2 0.769 12
DSOL1 0.757 13
DSOL14 0.721 14
DSOL15 0.646 15
DSOL16 0.568 16
DSOL17 0.489 17
DSOL 18 0.408 18
DSOL19 0.327 19
DSOL20 0.243 20

TABLE 4
OPTIMAL SOLUTIONS FOR SCENARIO WITH SECOND-STAGE

DECISION

Maps Objective Wells in use
value
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Map2 4.115 P
4
, p

6
, p

14
,  p

21
, p

27
, p

28

Map3 4.292 P
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Map10 4.079 P
4
, p

5
, p

14
, p

21
, p

27
, p

28

Map11 4.268 p
4
, p

5
, p

6
, p

20
, p

21
, p

28

Map12 4.278 P
6
, p

7
, p

14
, p

20
, p

21
, p

27
, p

28
, p

35
, p

42,
 p

49

Map13 4.132 p
5
, p

6
, p

14
, p

21
, p

27
, p

28
, p

35

Map14 4.305 p
4
, p

5
, p

6
, p

7
, p

20
, p

28

Map15 4.137 p
4
, p

5
, p

20
, p

21
, p

27
, p

28

Map16 4.211 p
4
, p

5
, p

6, 
p

20
, p

21
, p

28

Map17 4.187 P
4
, p

5
, p

6, 
p

20
, p

21
, p

28

Map18 4.424 P
4,  

p
5
, p

6, 
p

7, 
p

20
, p

21
, p

42

Map19 4.497 P
3
, p

6
, p

7
, p

20
, p

21
, p

27
, p

28
, p

35,
 p

42,  
p

48

Map20 4.206 P
5
, p

6
, p

20
, p

21
, p

27
, p

28



ISSN 0378-4738 = Water SA Vol. 26 No. 1 January 2000 41Available on website http://www.wrc.org.za

effort is required which might be unrealistic, hence limitation of the
number of realisations to be considered is unavoidable. This
limitation, therefore, leads to an optimal (most satisfactory) solu-
tion which cannot guarantee feasibility for all possible realisations
of the hydraulic conductivity.

To investigate whether the multiple scenario solution was any
different from the deterministic (the “here and now”) plan in terms
of robustness, a post-optimality Monte Carlo analysis was per-
formed on the multiple scenario scheme using the 20 pre-generated
realisations. The corresponding penalties associated with these
conductivity values before and after taking a second-stage decision
are shown in Table 5. If RC

A
 and RC

B
 are the sum of penalties after

and before second-stage decision respectively (Table 5), then the
percentage reduction in penalty is calculated as:

and amounts to about 46.4% corresponding to a reduction of
penalties amounting to about 12.5 MU. The percentage increase in
investment cost is calculated as:

where OBJ
M
 is the objective function value of the multiple scenario

solution and OBJ
H
 is the objective function value of the imple-

mented deterministic solution (DSOL11, see Table 1). This per-
centage increase in investment cost for the more robust scheme
amounts to about 21.7% (corresponding to an increase in invest-
ment cost of about 0.9 MU). Comparison of the percentage reduc-
tion of penalties due to second-stage decision taking, with percent-
age increase in investment cost suggests that the returns from a
second-stage decision taking outweigh the opportunity cost of
implementing the more stable solution.

Since robust optimisation aims at establishing a solution which
can perform reasonably well under all scenarios (i.e. a solution
which is nearly optimal under most conditions and at least reason-
ably safe under the worst conditions), it allows a DM to search for
solutions considering both solution robustness (solution should
remain close to optimal for any realisation of uncertain parameter),

and model robustness (solution should remain almost feasible for
any realisation of the uncertain parameter). As it is apparent from
Table 5, even with this robust solution, not all the constraints can
be met for all scenarios. However, the violations are substantially
reduced, and since the aim of robust optimisation is to design a
solution which performs rather well under all scenarios, the optimal
multiple scenario solution will not be declared useless under the
circumstances of the remaining violations.

Conclusion

The results obtained from this example clearly demonstrate the
importance of robust optimisation in water management decision-
making when confronted with a multi-objective problem in an
environment of uncertainty. Though robust optimisation, which is
predicated on a two-stage decision model, assumes the knowledge
of the uncertain parameters before the second-stage decision is
taken, it can be argued that perfect information is never acquired in
reality, and therefore robust optimisation aims at assisting a DM to
find solutions which hedge against the uncertainties which remain.
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