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Abstract

A methodology is developed for determining arobust optimal strategy for agroundwater hydraulic control problem posed within
the framework of stochastic multi-objective optimisation. The methodology explicitly considers uncertainty in hydraulic
conductivity and allowsdecision- makers(DMs) to eval uatetrade-off samong three conflicting obj ectives: aquifer yield, investment
and operational cost, and recourse cost (penalties) incurred if the stipul ated constraintsare violated. Themodel includesatwo-stage
decision processin which thefirst-stage decision (commonly referred to as* hereand now™ ) on how many wells, their pumping rates
and their locationsis made and i mplemented immediately without the foreknowledge of the outcome of the uncertain parameters.
Atalater stage, whentheuncertai n parametersbecomeknown, asecond-stage decisionistaken using theupdated data. A pplicability
of the methodology is demonstrated through a hypothetical (but realistic) example. A post-optimality Monte Carlo analysis is
conducted to examine the performance of the model in terms of robustness (stability). Preliminary results show that robust
optimisation can be useful in designing a strategy which performs reasonably well whatever the outcome of the uncertain

parameters.

Introduction

In recent years, the use of management models has considerably
grown in connection with the analysis of subsurface water re-
sources as suggested by the large number of research papersinthe
literature. This scenario is understandable especially when one
looks at the ever-increasing water consumption rates in agricul-
tural, industrial and civil establishments. Closely rel ated tothisfact
is the redlisation that the available groundwater resources are
limited to some extent and areto be carefully managed with theaid
of appropriate scientific tools if we want to put them to the most
beneficial use. To this end, numerical models have been used in
combination with optimisation techniquesto design optimal strat-
egies. One of the most challenging problems associated with the
simulation-optimisation approach to groundwater quantity man-
agement, especially when confronted with a problem encompass-
ing multipleconflicting objectives, ishow toincorporatetheeffects
of flow modelling uncertainty into the optimal decision-making
process. To date, most aquifer management models used to design
optimal groundwater management in a multi-objective environ-
ment havebeen assumedto bedeterministic. However, just likeany
other resource management, groundwater management is gener-
ally carried out in an environment of uncertainties. For example,
natural geological formations that form aquifers are naturally
heterogeneous. It is due to this heterogeneity, in combination with
lack of datato fully characterisetheaquifer, that solutionsbased on
deterministic methods are put into question.

The objective of this paper is, therefore, to present aregional
groundwater planning model which explicitly considers uncer-
tainty in hydraulic conductivity in a multi-objective optimisation
problem. The solution method is predicated on robust optimisation
(whichisessentially an extension of classical stochastic program-
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ming), which incorporates the DM’ s preferences (in terms of risk
of penalties dueto violation of constraints) and allows considera-
tion of nearly feasible solutionsinamultiple objectiveframework.
This approach has been used by Wagner et al. (1992).

Aquifer management models that combine simulation with
optimisation help in understanding how social and economic
forcesinteract with the water resource allocation. Just asasimula
tion model isatool to understand the physical/chemical behaviour
of an aquifer system, amanagement model can be thought of asa
tool, which provides insight into the economic and social conse-
guences of institutional changes. The combination of these two
methods has been achieved in at least two ways; through the
response matrix approach, and through the embedding approach.
In the response matrix approach, the influence of aunit changein
an independent decision variable such as pumping or recharge at a
pre-selected well location upon a variety of dependent variables
like drawdown and velocity at specified observation points, is
determined. Superpositionisthen performedto calcul atetheir total
response at specified points resulting from all decision variables.
Its main drawback isthe number of simulationsrequired to gener-
ate the responses as well as recal culate the response matrix when
the boundary conditions and well locations change. Thisapproach
has been used by Maddock and Lacher (1991); Heidari (1982);
Wanakuleetal. (1986); Willisand Finney (1985); and Van Tonder
et d. (1998). Other applications of thismethod have been made by
Gorelick and Remson (1982); Theodossiou and Tolikas (1995);
Galeati and Gambolati (1988); Maddock (1972); Herrling and
Heckele (1986); and Willis and Liu (1984). In the embedding
approach, numerical approximations of the flow eguations are
included directly as constraints in the optimisation model.
Discretisation isbased on either thefinite difference method or the
finite element method. In this method, the unknown groundwater
variables (headsand source/sink) become decision variablesinthe
optimisation method. This method, not only solves the problem
once (as opposed to the response matrix approach), but also
provides|otsof informationregarding thebehaviour of theaquifer.
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Nevertheless, this method has a disadvantagein that it resultsto a
large program (Gorelick, 1983). This approach has been used by
Gharbi and Peralta (1994); Yazicigil and Rasheeduddin (1987);
Magnouni and Treichel (1994); Aguadoand Remson (1980); Alley
et al. (1976); and Prathapar (1989).

Inthe planning of most water resource systems, therearemany
possibleobjectivesto consider, and thefuture performance of each
aternative is uncertain as a result of uncertainty in input para-
meters. Solution methods, which adopt a single objective ap-
proach, presuppose that the DM’s preferences are satisfactorily
addressed through the considered single obj ective. However, it can
be argued that in decision contexts, numerous, usually conflicting
objectivesareconsidered, henceinsuchsituations, theoptimisation
problem should be posed within a multi-objective framework.
Within thisframework, the analyst seeksto identify the Pareto set
(set of non-inferior solutions). This set isthen used to aid the DM
state his preferences. Among the works addressing groundwater
management in amulti-objective framework isthat of Kaunasand
Haimes(1985); Willisand Liu(1984); Shafikeetal. (1992); Gharbi
and Peralta (1994); and Magnouni and Treichel (1994).

Like any other resource management, groundwater manage-
ment is generally carried out in an environment of uncertainties.
Thus, thequestion of reliability of themodel outputisof paramount
importance. Heterogeneity in natural aquifer formationsiswidely
recognised as one of the major factors contributing to uncertainty
in predicting groundwater flow behavior and management strate-
gies.

Several methods have been used in an attempt to deal with
uncertainty in parameters. They include post-optimality sensitivity
analysis(e.g. Aguado et al., 1977; Gorelick, 1982; Bredehoeft and
Y oung, 1983), chance constrained programming (see Tung, 1986;
Mayer, 1992) and stochastic optimi sation with recourse method as
presented by Wagner et al. (1992). Recent works on stochastic
modelling include that of Van Leeuwen et a. (1998), Loll and
Moldrup (1998), and Huang and Mayer (1997).

In this paper, we present a methodology for solving multi-
objective problems when the aquifer parameters are considered
uncertain. Applicability of themethodol ogy isdemonstrated through
a hypothetical example.

Problem formulation

We consider the spatially variable hydraulic conductivity, k, to be
the only uncertain parameter. All other parameters are assumed to
beknown. Uncertainty isincluded in the optimisation formul ation
(Egs. (1-6)) by sampling the stochastic field of continuous hydrau-
lic conductivity values. The sampling isdone by obtaining a set of
realisations of this distribution, with every realisation having a
distinct value for the hydraulic conductivity of each cell. If we
denote the realisations (maps) of the hydraulic conductivity, k, as
w, w=1,..,Q, then each realisation, w, will result to different
responses, a, (a; i &€ components of the response matrix, A )
and hence different optimal solutions. Since this optimisation
problem (Egs. (1) - (6)) is stochastic because the constraints are
stochastic, we cannot guarantee that a selected management plan
will actually not violate the stipulated constraints. If =" 130P,
i =1,..., Nc (Nc is the number of control points and p are the
decision vari ables) are the computed drawdowns dueto asel ected
realisation, w, and b, arethe specified constraining val ues, then for
acontrol pointi, if (ZNW p) b, > 0it meansthat the constraint
has been violated (we dendtethewolatlon byv, =" 1 IJmp)
b) and hence a recourse action has to be taken to decrease the
damage caused by this violation. Associated with thisrecourseis
acost to carry out the recourse action.
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Figure 1
Linear-quadratic penalty function

Ideally, because of theuncertainty in hydraulic conductivity, it
isdifficult to design a solution stable enough to safeguard against
violation of constraints, whatever the outcome of the uncertain
parameters. However, not to over-emphasise on feasibility, aDM
can choose to alow optimal solutions having slight violations by
penalising them softly (or not penalising them at all) and discour-
age sol utions having extreme viol ations by imposing heavy penal-
ties. A linear-quadratic penalty function as shown in Fig. 1 is
suitablefor this purpose (Rockafellar and Wets, 1986). The shape
of thiscurve allowsthe DM great flexibility in that he can control
the shape of the entire function through choice of parametersp and
g. Thismeansthat based on the analyst’ sresultsfor variousvalues
of parameters p and g, the DM can choose a solution considering
both the optimality and penalties, thus determining the overall
shape of the curve.

The parameters p and g are related to the penalties p(v, p,q)
using the relationships: a

p(vi,w; p:Q): O’Vi,w <0

oo pr):V.wz/Zp,Osvm < pq

oW, p.0)=av,, - pq Vi 2 P
If p,= p(v,p0 expresses the penaty associated with the
violationv, = at the ith control point, in order to minimise the cost
of violation of the stochastic constraints, arecourse can be carried
out by means of a supplementary objective function. This supple-
mentary objective function (noted by Z)) which considers the
economic consequences of the violations of the constraints can be
writtenas[(V/ Q) 2% _ 2*_ p, . Thisapproachrequirescalcula-
tion of the violationsfor all possible maps of the uncertain param-
eters, resulting to adeterministic program which islarger than the
initial stochastic program. Wagner et al. (1992) has used this
approach to solve a single objective optimisation problem. The
formulation of the multi-objective problem can then be written as:

Mln DZ Z}\ijj @
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where:

N,, is the number of pumping wells

N, is the number of control points

A j isdaily cost of pumping andtransportationinmonetary units
per unit volume per unit lift for lacation |

p, ispumping ratein cell j, j=1,....N,

r isthe pumping lift given by (H-hj)

H is height of ground surface (measured from bottom of
aquifer)

hj isthe head in pumping well j

a isresponse at cell i due to pumping in cell j

b, 1sthe constraining value at control point i

W, istotal water demand.

ObjectiveZ, addressestheissue of cost of pumping and delivery of
water, objective Z, ensures maximum extraction of water while
objective Z, ensures minimum penalties due to violation of con-
straints. Theconstrai ntsplacelimitationson maximum drawdowns,
minimum water demand and minimum pumping rate (i.e. Egs. (4)
to(6)). Different objectivesand constraintscan aswell be specified
depending on the problem at hand. However, for this paper, we
consider the above objectives and constraints. Note that the con-
straintsarestochastic because of their dependenceonrealisation w.
The problem, therefore, involves identifying a solution which
minimises the cost of pumping and transportation, maximises the
pumping rates, and at the same time minimises the recourse costs
(penalties) subject to the specified constraints (Egs. (1) to (6)).

Methodology

Solution methods for multi-objective programsaimsat arriving at
arepresentation of the non-inferior set of solutionsfor considera-
tionby aDM. Thisset of non-inferior solutionsisusually large, and
itisnotimmediately clear tothe DM on how to choose one of them
for implementation. Consequently, decision aid techniques, also
known as decision support systems (DSSs), are required to assist
the DM to identify one of the solutions as the most preferred
compromise for implementation. The DSS used in this work is
predicated on utility theory, which involves a procedure which
aimsat finding avalue function as compatible as possible with the
subjective ranking defined by the DM on a set of reference
alternatives. The DSS requires a DM to subjectively rank a set of
reference solutions presented to him by the analyst. Therankingis
done considering both theinformation provided by the analyst and
any other information (criteria) the DM might consider important
even though such criteria may not be explicitly stated. Using this
subjective ranking, avalue function consistent with theranking is
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determined. This value function is applied to all non-inferior
solutionsto obtain aglobal ranking. Thealternative solutionwhich
ranksfirstistaken asthe most satisfactory for implementation. For
more details see Kostkowski and Slowinski (1996).

To solvethe stochastic problem, the groundwater flow simula-
tion software, MODFLOW (McDonald and Harbaugh, 1984), and
a single objective optimisation software, MINOS (Murtagh and
Saunders, 1995), are used. The simulation software is used to
generate the response matrix (constraints for the optimisation
problem) while MINOS together with user written programs are
used to solve the multi-objective optimisation problem. To assist
the DM identify one of the non-inferior solutions as the most
preferred, UTA+ software (Kostkowski and Slowinski, 1996), a
decision support system, is used. The methodology used to solve
the optimisation problem defined by Egs. (1) to (6) is developed
systematically starting with adeterministic schemethrough multi-
ple scenario scheme as follows:

Deterministic scheme

This scheme refers to a case when the parameters are assumed to
be known without error, hence the problemisdeterministic. When
no data are available, this problem can be examined by solving it
with all hydraulic conductivities set to their expected val ue result-
ing to a homogeneous problem (since the hydraulic conductivity
distributions are all assumed to have the same mean). With avail-
ability of data, the problem can be formulated in two ways: the
simplest way isto consider it as homogeneous by taking the mean
of all available measurements, and considering it asheterogeneous
by assuming that each or a group of the available sparse data
represents a certain area of the model domain.

Scenario with second-stage decision scheme

Scenario with second-stage decision arises from a situation where
afirst-stage (“here and now”) decision is made and implemented
based on the availableinformation about the uncertain parameters.
Atalater stagewhen moreinformation ontheuncertain parameters
becomes available, a second-stage decision is made using the
updatedinformation soasto minimiseviolation of constraints. This
scheme results to as many sets of optimal solutions as the number
of realisations (maps) considered. As such, the choice of which
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Ecological protection zone

penalty objectivefunction,i.e. Z, (seeEq. 3) whichisthenincluded
inthe set of objectivefunctionsand re-optimisation of the problem
done. A flow diagram for the numerical schemeisshownasFig. 4.

Application of methodology to an example

The proposed methodology is applied to a hypothetical example
modified fromthat of Magnouni and Treichel (1994). Theexample
has the following dimensions and properties:

Anisland of 30 km x 30 km.

Groundwater resources are accumulated in a single confined
aquifer of thickness 35 m that will be used for water supply to
adistribution centre situated at the middle of theisland.

The aquifer is heterogeneous with the spatial distribution of
hydraulic conductivity fields of mean value of 2.25x 10 m/s,
a standard deviation (log) of 0.5 and a corrélation length of
3000 min x-direction and 7 500 m in y-direction.

Objectives

Three objectives are considered and include:

3

Maximisation of total water pumping rates
Minimisation of operating costs (pumping and transportation

Modflow
Simulation
Calculate
penalties
Ve
| |Caleulate mean
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solve for? // VL
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No . objective finction
e
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' i f
Minos | [Cenerationo
Optimization non-interior DSs
solutions
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Flow chart for multiple scenario analysis

plan toimplement remains aformidabletask to the DM, hencethe
main disadvantage of scenario analysis in general. Nevertheless,
solutions from this scheme are certainly better than the determin-
istic scheme because they are evaluated taking uncertainty of the
parameters into consideration. They, therefore, provide informa-
tion on how the optimal solution changes as the uncertain para-
meters assume different values. A flow diagram for the numerical
schemeis shown as Fig. 3.

Multiple scenario scheme
Inthisscheme, a“hereand now” planisimplemented based onthe
available information (deterministic scheme). For all realisations

of the uncertain parameter, violations and hence penalties are
calculated. The matrix of penalties is then used to formulate a
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costs),
¢ Minimisation of recourse costs due to violation of constraints
resulting from uncertainties in the aquifer parameters.

Constraints

The DM expresses constraints on minimum water levels in an
ecological protection zone (Fig. 5), flow direction along the agui-
fer/ocean border to avoid salt-water intrusion and maximum pump-
ing yields at each cell asfollows:

On the border of the island, the hydraulic head is equal to sea
level. Whilein the other nodes it is bounded by bottom of the
aquifer.

In the specified ecological protection zone, the minimum
water level equalsSma. s.1. Toavoid salt-water intrusion, head
in cells next to the ocean are not allowed to fall below 0.2
mas.|.

Thereis minimum water demand of 3 m¥/s at the distribu-
tion centre which should be satisfied. Pumping rates from
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Location of potential pumping wells

potential wells (shown in Fig. 6) are limited to a maximum
yield of 1.5 m¥s.

Unit costsof exploitation, defined at each potential well are
calculated as a combination of the water pumping costs and
water transport costswhich aredependent on thedistancefrom
thewell to thedistribution center. The costs are assumed to be
higher towards the boundaries. The aggregated unit cost coef-
ficients at each cell take on values from 0.1 at the centre and
increase at arate of 0.1 for every 200 m distance.

The problemisto find the location of wells and the corresponding
pumping rates, satisfying all or nearly all the constraints on the
hydraulic heads and pumping rates, and the minimum demand at
the distribution center. Moreover, the solution should be the best
compromise among the multiple conflicting criteriain an environ-
ment of uncertain spatial hydraulic conductivity values.

Discussion of results

For thisexample, 20 unconditional realisations(maps) of hydraulic
conductivity were generated using amean value of 2.25x103 m/s,
a standard deviation (log) of 0.5 and a correlation length of
30 000 min x-direction and 7 500 m in y-direction. Each of the
realisationsisassumedequally likely toexistinreality. Thepenalty
function parametersused arep=0, and q=0.2 (seeFig. 1), i.e. the
penalty isalinear function of violation.

Deterministic scheme

For this scheme, 20 non-inferior solutions were generated (see
Table1). For purposesof discussionontheapplicationof UTA+ (a
DSS), a subset of seven representative solutions was arbitrarily
chosen and given subjective ranks. Note that ordinarily, the set is
presented to a DM who is then asked to articulate his preferences
in the form of ranking them. Table 2 shows these reference
solutions with their subjective ranks.

Using the information on subjective ranking on the reference
set, and two linear segments for cost-marginal value function and
one linear piece for the volume-marginal value function, a global
value function (using a DSS) compatible with the subjective
ranking with Kendall's coefficient value of 0.94 was found.
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TaBLE 1

GENERATED NON-INFERIOR SOLUTIONS
Solution Cost Volume
No.
DSOL1 1.384 3.000
DSOL2 1.617 3.281
DSOL3 1852 | 3563 ThBLE 2
DSOL4 2096 3.844 REFERENCE SOLUTION
DSOL5 2345 | 4126 SET
DSOL6 2.593 4.407 Solution Rank
DSOL7 2.848 4.688
DSOLS8 3.107 4.970
DSOL9 3.365 5.251 gg‘j g
DSOL10 3.628 5.533 DSOL8 1
DSOL11 3.902 5.814 DSOL 10 >
DSOL12 4,181 6.096 DSOL 13 4
DSOL13 4.467 6.377 DSOL 15 6
DSOL 14 4,768 6.658 DSOL20 7
DSOL15 5.080 6.940
DSOL16 5.400 7.221
DSOL17 5.724 7.503
DSOL18 6.053 7.784
DSOL19 6.386 8.065
DSOL20 6.726 8.347

Kendall’s coefficient is a measure of consistency between the
subjectiveranking and ranking dueto theestimated valuefunction.
Notethat, itisonly whentheKendall’ scoefficientisequal to 1, that
the estimated value function exactly fits the subjective ranking.
Otherwise for aKendall coefficient different from 1, it meansthat
theranking duetotheestimated global valuefunction doesnot rank
the aternatives in exactly the same way as the DM. Therefore,
some aternatives may end up being ranked differently (inter-
changed). The high value of Kendall’s coefficient obtained indi-
catesthat the assessed valuefunctionisacceptable. Thisisbecause
the ranking of the alternatives due to this value function is fairly
consistent with the given one. This value function was applied to
the whole set of pre-generated non-inferior solutions, resulting to
aglobal ranking of the efficient solutions as shown in Table 3.

The DSS therefore identified solution DSOL11, as the most
preferred one for implementation (Table 3). This solution resulted
to an optimal objective function value of 3.902 MU (MU =
monetary units), and pumping ratesof p,= 1.500, p,.= 0.932, p,,=
0.596,p,,= 0.074,p,,= 0.466, p,,= 1.50, p,,= 0.240and p,. = 0.506
mé/s. This optimal pumping scheme is shown as Fig. 7. Asis
evident fromthisfigure, the pumping wellsaregenerally located at
the north-east side of the model domain, away from the ecological
protection zone.

Scenario with second-stage decision

The"hereand now” planto beimplemented issimilar to that of the
deterministic case (solution DSOL11). Then, depending on the
outcome of the uncertain parameter, a second-stage decision is
taken to minimise the penalties. Resultsfor scenario analysiswith
second-stage decision corresponding to the 20 conductivity maps
result in optimal objective function values ranging from a mini-
mum value of 4.079 MU to a maximum value of 4.497 MU (see
Table 4). Compared with the objective function value of the
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TaBLE 3
FINAL RANKING
Solution Utility value Rank
DSPL11 0.885 1
DSOL 10 0.872 2
DSOL12 0.862 3
DSOL9 0.859 4
DSOLS8 0.846 5
DSOL7 0.833 6
DSOL6 0.821 7
DSOL5 0.808 8
DSOL4 0.795 9
DSOL13 0.794 10
DSOL3 0.782 11
DSOL2 0.769 12
DSOL1 0.757 13
DSOL14 0.721 14
DSOL15 0.646 15
DSOL16 0.568 16
DSOL17 0.489 17
DSOL 18 0.408 18
DSOL19 0.327 19
DSOL20 0.243 20
P, P,
Pl3 P14
P21
P27 P28
P35
Figure 7

Optimal pumping scheme (DSOL11)

deterministic scheme(3.902MU), al the solutionsfor the scenario
with the second-stage decision scheme have higher initia invest-
ment cost thanthedeterministic case. Thus, it can bearguedthat the
price to pay for a more robust solution, which will be able to
withstand slight variations of the system parametersis the differ-
enceininvestment cost between the deterministic solution and the
scenario with second-stage decision solutions, which range be-
tween aminimum vaue of 0.177 (i.e. 4.079-3.902) and 0.595 MU
(i.e.4.497-3.902). Theoptimal pumping schemescorrespondingto
the 20 conductivity maps are different from one another aswell as
from the implemented deterministic solution (Table 4).

As mentioned before during our discussion on methodology,
when dealing with scenario analysis (i.e. scenario with second-
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TaBLE 4
OPTIMAL SOLUTIONS FOR SCENARIO WITH SECOND-STAGE
DEecision
Maps Objective | Wells in use
value
Mapl 4114 P4’ pS’ p20’ p21’ p27’p28
Map2 4115 P4’ p6’ p14’ p21’ p27’ p28
Map3 4292 PA’ pS’ p6, p7, p20’ p28’ p35
Mapd | 4468 | P, p, P, P, Pry Py Py Py
Map5 4.158 P5, Pe: Py Paps Pops Pyg
Map6 4.082 P4' Ps: Puy Poyr Pyr P
Map7 4.121 PA’ Ps: Pygr Poyr Pyr Pog
Map8 4353 pev p71 p14y pzov p21v p27’ pzs’ p35’ p42
Map9 4.384 P, Py Ps, Pz, Pagr Pags Paps Pag
Mapl0 | 4.079 PA’ Ps: Pyr Poy Pyr Pog
Mapll | 4.268 Pa: Ps: Ps: Poyr Pays Pog
Mapl2 4.278 Pe’ P71 Pyr Pogr g1 Pogs Pogr Pagy Pup, Pyg
Map13 4.132 Ps: Per Pugr Poyy Popr Pogr Pos
Mapl4 | 4.305 Pa: Ps: Ps: Py Pogy Pyg
Mapl5 4.137 Par Psi Pygr Poy Pyr Pog
Mapl6 | 4.211 Py Per Pg Pogr Pays Pog
Mapl/ 4.187 PA’ P Pg Paor Pays Pg
Mapl8 | 4.424 | P, Py P, P, Pa Py Py
Map19 4.497 P3’ Pe: Py Pogr Poys Pos Pogs Ps Py, Pg
Map20 | 4.206 Ps' Per Pygr Poyr Pyr Pog

stage decision), the question of which optimal plan to choose
among themany scenariosfor implementation isnot very obvious.
Thisis because, as Table 4 demonstrates, there are changesin the
optimal pumping strategy from realisation (map) to realisation
which involves changesin well locations and pumping rates. This
means that the optimal scheme corresponding to, for example,
Mapl9 (worst-case scenario), will not necessarily satisfy the
constraints for all redisations, because individual realisations
control individual flow patterns and consequently dictate optimal
well placement and pumping patterns. This limitation was also
pointed out by Wagner and Gorelick (1989).

Multiple scenario results

Theoptimal solution for multiple scenario schemeisshowninFig.
8 with the objective function taking on a value of 4.749 MU.
Comparison of the optimal objective function values of the sce-
nario with second-stage decision scheme (see Table 4, column 2)
and that of multiple scenario schemeof 4.749 MU suggeststhat the
latter scheme is more expensive than the former. Compared with
the optimal pumping strategy of the deterministic scheme, the
optimal pumping strategy of the multiple scenario schemeismore
spread out (see Fig. 7 and Fig. 8)indicating that solutions obtained
by assuming that the parameters are perfectly known are quite
different from those obtained when the problem is posed within a
stochastic framework.

Robustness of the multiple scenario solution

Ideally, the solution of themultiple scenario schemewould require
consideration of avery large set of realisations (maps), if oneisto
gain athorough knowledge of its stability (robustness) against the
effects of uncertainty due to spatial variability of the hydraulic
conductivity. To achieve such asol ution, enormous computational
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Optimal pumping scheme for multiple scenario scheme

effortisrequiredwhich might beunrealistic, hencelimitation of the
number of redlisations to be considered is unavoidable. This
limitation, therefore, leads to an optimal (most satisfactory) solu-
tion which cannot guaranteefeasibility for all possiblerealisations
of the hydraulic conductivity.

To investigate whether the multiple scenario solution was any
different from the deterministic (the* hereand now”) planinterms
of robustness, a post-optimality Monte Carlo analysis was per-
formed onthemultiple scenario schemeusing the 20 pre-generated
realisations. The corresponding penalties associated with these
conductivity valuesbeforeand after taking asecond-stagedecision
areshownin Table5. If RC, and RC, arethe sum of penalties after
and before second-stage decision respectively (Table 5), then the
percentage reduction in penalty is calculated as:

RC g —RC , x 100
RC &

and amounts to about 46.4% corresponding to a reduction of
penaltiesamounting to about 12.5 MU. The percentageincreasein
investment cost is calculated as:

OBJ ,, ~OBJ , {00
OBJ ,,

where OBJ,, istheobjectivefunctionvalueof themultiplescenario
solution and OBJ, is the objective function value of the imple-
mented deterministic solution (DSOL11, see Table 1). This per-
centage increase in investment cost for the more robust scheme
amounts to about 21.7% (corresponding to an increase in invest-
ment cost of about 0.9 MU). Comparison of the percentage reduc-
tion of penaltiesdueto second-stage decision taking, with percent-
age increase in investment cost suggests that the returns from a
second-stage decision taking outweigh the opportunity cost of
implementing the more stable solution.

Sincerobust optimisationaimsat establishing asolutionwhich
can perform reasonably well under all scenarios (i.e. a solution
whichisnearly optimal under most conditions and at |east reason-
ably safe under the worst conditions), it allowsaDM to search for
solutions considering both solution robustness (solution should
remain closeto optimal for any realisation of uncertain parameter),
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TABLE 5
PENALTIES FOR MULTIPLE SCENARIO SCHEME BEFORE
AND AFTER SECOND-STAGE DEcisioN TAKING
Maps Before second- After second-
stage decision stage decision
Mapl 0.185 0.541
Map2 0.142 0.000
Map3 1418 2.065
Map4 2.770 0.603
Map5 0.476 0.119
Map6 0.017 0.000
Map7 0.453 0.218
Map8 1.774 0.639
Map9 2.593 2.404
Mapl0 0.000 0.038
Mapll 1.505 0.214
Mapl2 2.307 0.711
Mapl3 0.370 0.044
Mapl4 1.403 1.648
Mapl5 0.200 0.528
Mapl6 0.854 0.599
Mapl7 0.573 1519
Mapl8 2.328 1.644
Map19 6.547 0.592
Map20 1.057 0.327
2RC,=26.972 2RC, =14.448

and model robustness (solution should remain almost feasible for
any realisation of the uncertain parameter). Asit is apparent from
Table 5, even with this robust solution, not all the constraints can
be met for all scenarios. However, the violations are substantially
reduced, and since the aim of robust optimisation is to design a
solutionwhich performsrather well under al| scenarios, theoptimal
multiple scenario solution will not be declared useless under the
circumstances of the remaining violations.

Conclusion

The results obtained from this example clearly demonstrate the
importance of robust optimisation in water management decision-
making when confronted with a multi-objective problem in an
environment of uncertainty. Though robust optimisation, whichis
predicated on atwo-stage decision model, assumesthe knowledge
of the uncertain parameters before the second-stage decision is
taken, it can beargued that perfectinformationisnever acquiredin
reality, and thereforerobust optimisation aimsat assistingaDM to
find solutionswhich hedge agai nst the uncertaintieswhich remain.
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