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Flood forecasting for the upper reach of the Red River Basin,
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Huynh Ngoc Phien* and Nguyen Duc Anh Kha
School of Advanced Technologies, Asian Institute of Technology, Bangkok, Thailand

Abstract

Flood forecasting remains a very important task. Good forecast values with sufficient lead times can help reduce flood damages
significantly. This paper proposes two types of black-box model obtained by using multiple regression analysis and back-
propagation neural networks in forecasting 6-h water levels at three important stations on the upstream section of the Red River
basin, North Vietnam. The results obtained show that highly accurate forecast values can be obtained with lead times of up to 18
h by using two most recent past values of the water level at the station considered or two most recent past values at this station and
two most recent values of an upstream station.
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Introduction

Flood forecasting remains very important in any relief activities. In
many cases, this task may rely on many different approaches. Due
to the availability of data required, a daily basis has been widely
adopted. This, in turn, leads to the forecasting of daily discharges
at a number of selected stations - treated as reference stations - in
the forecasting task, as well as in the alleviation of possible flood
damages. In many cases, some conceptual rainfall-runoff models
are used when these models are not really intended for forecasting
purposes (Phien and Danh, 1997). These authors have made some
slight changes to the way to treat input data to render these models
suitable for forecasting. However, they may not perform as well as
black-box models (Jain and Indurthy, 2003).

In the case of a number of stations in the Red River basin, North
Vietnam (Fig.1), 6-h water level data are available during the flood
season, from 1 June to 30 September. To deal with these cases, we
propose the use of black-box models for the following reasons:

• Generally speaking, these models are data-driven: The model
to be selected for use at a station should be based on the data
available. For example, for conceptual models, data on evapo-
ration (and several other factors) are required. Unfortunately,
such data are not available (or at least unobtainable) to us.
Therefor most conceptual models cannot be used.

• Most conceptual rainfall-runoff models normally produce val-
ues for discharge rather than for water levels. In order to obtain
water-level values from such a model, the drainage area of, and
the rating curve at the station concerned are required. Due to the
inaccuracy in the rating curve to convert discharge values to
water-level values (and vice versa), the forecast values ob-
tained for the water level may be far from accurate.

• From the experience gained in previous studies (Phien et al.,
1990; Danh et al., 1999; Phien and Sureerattanan, 1999), it was
decided to make use of two general models, namely the
multiple linear regression model and the back-propagation
neural network model, for forecasting the water level at three
stations, one on each main tributary of the Red River (Fig. 1):

• Ta Bu station on the Black (Da) River
• Yen Bai station on the Thao River, and
•     Vu Quang station on the Lo River.

Located on the upper reach of the Red River basin, these stations
do not have any tidal effect. As such, no tidal data are needed for
forecasting purposes.

Multiple linear regression (MLR) model

The general forecasting equation based on MLR can be written as
follows:

 (1)
where:

H : water level at the station under consideration
U : water level at the upstream station(s)
R : rainfall
A, aj, bj, cj : regression coefficients
τ : forecast lead time.

Using the least squares method, the regression coefficients can
readily be obtained.

Back-propagation (BP) neural network model

This is a multilayer feed forward neural network with a back-
propagation algorithm used for updating its weights. The BP neural
network model has been extensively used in many applications,
including forecasting problems.

• Atiya et al. (1999) applied BP neural networks to forecast the
flow of the Nile in Egypt with fairly good results.

• Maier and Dandy (2000), in their survey, found that out of 43
papers dealing with the use of neural networks for forecasting
of water resources variables, 41 papers employed BP models.

• Hsieh et al. (2001) applied the BP neural network model for
flood forecasting for two different scale watersheds, namely
the Sala River in Croatia and a segment of the Mississippi
River, USA. They found that good downstream river-flow
forecasts could be obtained from upstream gauges for the Sala
River, and very good river-flow forecasts from two upstream
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stations, without the need to use of rainfall data, for the
Mississippi River.

Other applications of the BP neural network model can be found in
Jain et al. (2001), and Koussis et al. (2003).

The structure of a BP model for the problem at hand is shown
in Fig. 2 with the input layer, one hidden layer, and the output layer
with only one node. The activation function adopted is the sigmoid
function:
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where:
Nj : number of nodes in the jth

layer
wjki : weight from node k of layer j

and node i of layer (j-1)
θjk : bias at node k of layer j
Tjk : temperature at node k of layer

j of the sigmoid function

It should be noted that the tempera-
ture term is present in Eq. (2) be-
cause of the involvement of the
training algorithm developed by
Phien and Sureerattanan (1999),
which was found to perform very
satisfactorily. This algorithm can
be summarised as follows:

1. Randomise all weights, biases
and temperatures of the sig-
moid function and set the ini-
tial value to the inverse matrix
R-1 where R is the correlation
matrix of the training set.

2. Present a training pattern pair
p (xp0,op) to the network.

3. For each layer from the first
hidden layer to the output layer:
(a) Calculate the model out-

put xjk for every node k in
layer j, following Eqs. (2)
and (3).

(b) Calculate the Kalman gain
kj and update the inverse
matrix  Rj

-1for each layer j
from the first hidden layer through output layer L by the
following expressions:
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where:
bj is the forgetting factor with values between the [0,1]
interval.

(c) Calculate the error signal eLk for the weights of the output
layer L and ejk for that of the hidden layers:
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(d) Calculate the actual pre-image output at the output layer:
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(e) Calculate the weight change ∆wjk for each layer j from
1 to L:
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where:

λj is the learning rate in the jth layer
α is the momentum coefficient
t is the present iteration number.

(f) Calculate the error signal δLk for the temperature of the
output layer and δjk for that of the hidden layers:

  (10)

  (11)

(g) Update the weights wjk and the temperature of the sigmoid
function Tjk

wjk(t+1) = wjk(t) + ∆wjk(t+1)   (12)

Tjk(t+1) = Tjk(t) + ∆Tjk(t+1)   (13)

4. Repeat from Steps 2 to 3 for all training patterns until the
system error (sum of squared errors) reaches its minimum.

The number of hidden nodes of the required back-propagation
model for each case was determined by using the Bayesian infor-

mation criteria (BIC) as proposed by Phien and Sureerattanan
(1999).

Performance statistics

The performance of a model can be measured by the root mean
square error (RMSE), efficiency index (EI), mean absolute devia-
tion (MAD) and maximum relative error (Remax).

• Root mean square error (RMSE)

N
SSERMSE =   (14)

where:
SSE is the sum of squared errors and N is the number of data
points used:
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ii e)ŷy(SSE   (15)

where:
yi and yi  are respectively the observed and computed (from the
model under consideration) values of y, and ei is the error, being
the difference between the observed and computed values.

• Efficiency index (EI)

This index, introduced by Nash and Sutcliffee (1970), is
defined as:
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where:
ST is the total variation and y is the mean value taken over N
values of y.

• Mean absolute deviation (MAD)

MAD is the average of the absolute values of the differences
between model output and observed values of the output:
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Figure 2
Sketch of the back-propagation model

)t(T

T
y

e1

T
y

e

T
y

)1t(T jk2

jk

jk

jk

jk

2
jk

jk
jkjk ∆γ+






















−+











−

δµ−=+∆















≠






















−+











−

=−

= ∑ +

+

+

+

+

+
+ Ljwhenw

T
y

e

T
y

e

T

Ljwhenxo

l
klj

lj

lj

lj

lj

lj
lj

Lkk

jk
,,12

,1

,1

,1

,1

,1
,1

1

1δδ

^



ISSN 0378-4738 = Water SA Vol. 29 No. 3 July 2003270 Available on website http://www.wrc.org.za

To give a better indication of the magnitude of the error, the
ratio between MAD and the mean y should be used. It is
denoted as RAD:

y
MADRAD =   (20)

· Maximum relative error (Remax)
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As there is a close relationship between the root mean squared error
and the efficiency index, the latter is used in summarising the
results because it can indicate the performance of the model being
attempted, along with RAD and Remax.

Data employed

In this study, the 6-h data on the rainfall and water level are used.
After several runs, it was found that incorporation of rainfall data
did not improve any models concerned. So finally, the data em-
ployed at the selected stations are as follows:

• Ta Bu Station: 6-h data on water level (1989-1996)
• Yen Bai Station: 6-h data on water level (1989-1996)
• Vu Quang Station: 6-h data on water level for 1987-1996 at Vu

Quang and Ghenh Ga, an upstream station of Vu Quang.

Each set of data was split into two parts: one for model calibration
(training) and the other for model validation (testing), as shown in
Table 1.

Results

Ta Bu Station

The results for both models are collected in Tables 2a and 2b for the
training and testing stages, respectively. The values of the effi-
ciency index are quite high (more than 0.90) showing that the
models obtained by multiple linear regression (MLR) and back-
propagation networks (BP) perform very satisfactorily for lead
times of up to 3 time units, i.e. 18 h.

By inspecting the values of RAD and Remax, it is clear that the
models are good:
• the average absolute deviation is about 0.5% of the mean value

of the water level;
• the maximum relative error is within 20% (even for the testing

stage).

Figure 3 shows that there is a good match between the observed and
forecast water level for the case with forecast lead times of 3 units
(or 18 h).

Yen Bai Station

The results are shown in Tables 3a and 3b for the training and
testing stages, respectively. They are not as good as those for Ta Bu.
However, all the performance statistics, as well as Fig.4, indicate
that the models are very good.

Vu Quang Station

The results of this station are shown in Tables 4a and 4b, for the
training and testing stages respectively. A graphical comparison

between the forecast and observed values of the water level is
shown in Fig. 5 for lead time equal to 18 h. Again the resulting
models performed excellently.

Discussion

• For two stations, namely Ta Bu and Yen Bai, only the past
values of the water level are used in forecasting future values.
This leads to a very simple structure of the back-propagation
neural network required: two input nodes and one hidden node.
The fact that there are only two input nodes shows that only the
two most recent values can be used to forecast the following
three values.  Even with this simple structure, the BP models
obtained perform very well.

• For Vu Quang, due to the involvement of the upstream station
(Ghenh Ga), the BP model appears a bit more complicated. We
need four input nodes and three hidden nodes. Future water-
level values can be forecast quite accurately with the use of only
the two most recent values.

• All the MLR models obtained require the same two most recent
values, as do the BP models. Inspecting all the results shown in
the above tables reveals that the MLR models perform slightly
better than the BP models. As the MLR models are much
simpler than the BP models, this means that a simpler model
may perform better than a more sophisticated model.

TABLE 1
Data for training and testing stage

Station Training Testing

Ta Bu 1989-1993 1994-1996
Yen Bai 1989-1993 1994-1996
Vu Quang 1987-1992 1994-1996
Ghenh Ga 1987-1992 1994-1996

TABLE 2a
Results at Ta Bu (training stage)

τττττ MLR BP

EI RAD Remax EI RAD Remax Struc-
 ture (*)

1 0.99 0.002 0.037 0.98 0.002 0.037 2-1-1
2 0.96 0.004 0.042 0.95 0.004 0.043 2-1-1
3 0.92 0.005 0.052 0.92 0.005 0.053 2-1-1

(*) 2-1-1 denotes a network with 2 input nodes, 1 hidden
node and 1 output node.

TABLE 2b
Results at Ta Bu (testing stage)

τττττ MLR BP

EI RAD Remax EI RAD Remax

1 0.99 0.003 0.120 0.99 0.010 0.111
2 0.99 0.007 0.217 0.99 0.010 0.207
3 0.98 0.011 0.221 0.98 0.013 0.209
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Figure 3
Comparison between forecast and observed water level at Ta Bu Station (lead time = 18 h)

Calibration period

Calibration period
Figure 4

Comparison between forecast and observed water level at Yen Bai Station (lead time = 6 h)

Validation period

Validation period

TABLE 3a
Results at Yen Bai (training stage)

τττττ MLR BP

EI RAD Remax EI RAD Remax Struc-
 ture

1 0.97 0.004 0.050 0.97 0.004 0.052 2-1-1
2 0.92 0.007 0.062 0.91 0.008 0.063 2-1-1
3 0.85 0.010 0.074 0.85 0.010 0.075 2-1-1

TABLE 3b
Results at Yen Bai (testing stage)

τττττ MLR BP

EI RAD Remax EI RAD Remax

1 0.98 0.003 0.049 0.98 0.004 0.052
2 0.93 0.007 0.066 0.92 0.008 0.062
3 0.85 0.010 0.090 0.85 0.011 0.085

TABLE 4a
Results at Vu Quang (training stage)

τττττ MLR BP

EI RAD Remax EI RAD Remax Struc-
 ture (*)

1 0.99 0.005 0.068 0.99 0.008 0.076 4-3-1
2 0.99 0.010 0.098 0.98 0.012 0.103 4-3-1
3 0.97 0.015 0.137 0.96 0.016 0.141 4-3-1

(*) 4-3-1 denotes a network with 4 input nodes, 3 hidden
nodes and 1 output node

TABLE 4b
Results at Vu Quang (testing stage)

τττττ MLR BP

EI RAD Remax EI RAD Remax

1 0.99 0.004 0.030 0.99 0.008 0.052
2 0.99 0.008 0.071 0.98 0.011 0.087
3 0.97 0.013 0.113 0.96 0.016 0.167
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• As expected, when the lead time increases (from one to three
time units, i.e. from 6 h to 18 h), the performance of all the
models decreases.

• It should be noted that the drainage area of Ta Bu or Yen Bai
is much larger than that of Vu Quang. As such, the water level
values at Ta Bu and Yen Bai do not fluctuate as much as those
at Vu Quang. This may be the reason for the need to include the
information contained in the water-level data at an upstream
station like Ghenh Ga in order to arrive at a good model for
forecasting the water level at Vu Quang.

• In view of the tabulated values of the performance statistics, a
model may perform better in the testing stage than in the
training stage. This happens purely by chance: The data set
used for testing happens to be more appropriate for that model.
In general, the performance in the testing stage should be less
satisfactory than that in the training stage.
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Conclusions

From the results obtained and the discussions presented above, the
following conclusions can be drawn for the case of the three
stations considered:

• For forecasting the water level at a station, only two most recent
values of the water level at that station alone, or two most recent
values at it and at an upstream station are required.

• For large catchment areas such as those of the stations consid-
ered in this study, a simple model obtained by multiple regres-
sion analysis can do an excellent forecasting task of up to 3 time
units, which is the lead time needed for most flood mitigation
activities.

Figure 5
Comparison between forecast and observed water level at Vu Quang Station (lead time = 18 h)

Calibration period Validation period

• A more sophisticated model such as the back-propagation
neural network can also perform very well. However, it does
not necessarily follow that a more sophisticated model can do
better. In fact, for all the three stations, the models based on
multiple regression analysis perform slightly better than those
based on neural networks.
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