
ISSN 0378-4738 = Water SA Vol. 29 No. 3 July 2003 273Available on website http://www.wrc.org.za

Reservoir system optimisation using a penalty approach and
a multi-population genetic algorithm
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Abstract

A multi-population genetic algorithm (GA)  was used to optimise a system of two reservoirs that supplies monthly varying demands
and environmental flow requirements. Optimisation aimed at minimising the penalty resulting from non-supply of water and the
occurrence of low reservoir storage states that would limit non-consumptive utilisation of water in the reservoirs. Four cases were
analysed viz. Case I: Reservoir capacities and demands were fixed and the operating rules were optimised; Case II: Demands were
fixed and the reservoir capacities and operating rules were optimised; Case III: Reservoir capacities were fixed and the demands
and operating rules were optimised; and Case IV: Reservoir capacities, demands and operating rules were optimised. The genetic
algorithm obtained reasonable solutions for all cases. A detailed analysis of Case IV obtained several high-performance solutions
of varied sizes and supply capabilities. This analysis revealed specific limitations of supply reliability and the expected storage
states of one of the reservoirs. The analysis also obtained the ranges within which the optimal monthly operating rules for the system
are expected.
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Introduction

The reservoir system optimisation problem is often quite complex.
At the planning and design stage, decisions on system configura-
tion and component sizes have to be made. Once this has been done,
the operating rules that will maximise system performance need to
be formulated. Ideally, the two problems should be dealt with
together although system yield and sizing analysis is often taken as
separate from the system operation problem. The comprehensive
analysis of reservoir management and operations models by Yeh
(1985) and Loucks et al. (1981) and others provides ample evi-
dence of this. Yield analysis methods that incorporate operation
scheduling are, however, in practical use. For example, the water
resource yield model that is widely used in South Africa applies the
storage state balancing space rule approach (Basson et al., 1994).
The space rule operating policy ensures that all reservoirs in the
system are drawn down together in a manner that allows all the
water stored in the reservoirs and all water entering the system to
be available to meet the target draft without a shortfall until all the
reservoirs have failed simultaneously. The reservoirs are thus
operated in a manner that utilises the overall storage capacity to the
maximum and prevents any unnecessary water spillages. Johnson
et al., (1991) have used this approach in reservoir operation
analysis. The associated water resource planning model also widely
used in South Africa refines these rules using an iterative network
flow programming approach (Basson et al., 1994). This approach
defines the system as a network configuration of arcs and nodes
with each arc having a lower and an upper flow bound and also an
associated cost per unit of flow. The optimisation aims at minimis-
ing the total cost of flow in the network and the operating rules are
derived from the optimal solution. Hsu and Cheng (2002) have
used the network flow approach to optimise a water resource
system in Taiwan. This paper is aimed at demonstrating the

application of the genetic algorithm (GA) method to a practical
reservoir system optimisation problem including capacity and
yield analysis and also system operation. The hydrology is based on
a real system but hypothetical demands and environmental flow
requirements are applied. The GA is a good candidate for reservoir
system optimisation as it possesses some unique advantages over
many classical optimisation methods. These are discussed in the
next section. Although the GA has been researched and applied
fairly extensively, it is only recently that applications to reservoir
operation have been reported (Oliviera and Loucks, 1997, Wardlaw
and Sharif, 1999, Sharif and Wardlaw, 2000). As Van Vuuren
(2002) indicates, the potential of the GA has not been fully utilised
in the South African water industry.

A water resource system could be designed to maximise yield
or to minimise the penalty caused by non-supply of water and/or
non-utilisation of reservoirs due to low storage levels. The appli-
cation of the GA to maximise system yield, subject to probability
constraints of supply and reservoir storage states for the same
system is reported elsewhere (Ndiritu, 2002) while the penalty
approach is applied here. Penalties should ideally be obtained from
socio-environmental-economic analysis of the costs of non-supply
and non-availability of water in reservoirs. As Basson et al. (1994)
indicate, data availability in general is extremely limited while
many intangible social and political factors also often come into
play. Relative penalties agreed upon by the water management
body and all the stakeholders could be a reasonable alternative. The
penalties applied here are hypothetical but are not considered
unrealistic.

The hydrology of the system analysed is based on the Elands
River catchment in South Africa up to Mkombo Dam which
supplies domestic and industrial needs. The other dam in the
catchment, Rust de Winter, supplies irrigation water.

The genetic algorithm

Because detailed descriptions of the basics of the GA are widely
available, only a brief explanation of how the GA works is given
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here. The GA is a population-based optimisation method based on
the principle of survival of the fittest. An initial population of
possible solutions to the problem being optimised is generated
randomly in a coded form. The representation of the population as
a code enables the exchange of the valuable ‘genetic’ material
within individual members. To ensure that this happens, the
selection of the members to create the next generation is carried out
in a manner that favours the better performing ones. Crossover, the
exchange of parts of the codes of a specific proportion of the
selected parents to obtain the ‘children’, then follows. The propor-
tion of the selected parents to involve in crossover is the probability
of crossover. The generated children are then subjected to mutation
– the change of a small proportion (probability of mutation) of the
genetic code to encourage search into regions beyond the parent
population. The processes of selection, crossover and mutation
(termed as a generation) are repeated until the set termination
criterion is met. The termination criterion could be the convergence
to an optimum (indicated by no further improvement with succes-
sive generations) or a set maximum number of generations or
system simulations. Numerous modifications to the basic GA have
been made to suit specific applications and to improve GA perform-
ance.

The GA code applied here was written by the author in Fortran
90. It used binary coding , tournament selection and multiple point
crossover.  A description of this GA follows. The value of each
decision variable i say vi was represented as a randomly generated
binary substring of a specified bit length (l). The actual value vi was
computed by linear interpolation between the lower bound Vli and
the upper bound Vui of the search range. For example, if a code
0110 was generated, then vi = Vli+[Vui-Vli] [0(23) + 1(22) + 1(21) +
0(20)]/(24 - 1) = Vli + [Vui - Vli][6/15]. A point in the n-dimensional
search space consisted of the values of the n decision variables and
was represented as a string (chromosome) composed of the binary
substrings of the individual variables. The performance of each
chromosome was obtained by first decoding the chromosome to
obtain the variables vi and using these to simulate the problem and
thereby obtain the objective function. Tournament selection was
implemented as follows: Two sets of chromosomes were randomly
selected from the population with each consisting of a specified
number of chromosomes called the tournament size. The best
performing chromosome from each set was obtained. The process
was repeated c x p times where c is the probability of crossover and
p the population size. Each selected pair was used to generate a
‘child’ of the new population in the crossover step. To implement
multi-point crossover, locations corresponding to variable substring
boundaries of the chromosomes were generated randomly. The bit
material (genetic code) at these locations was exchanged to obtain
a child. Each child replaced a randomly chosen member of the
initial population. Mutation was implemented by changing the bit
values (replacing 0 with 1 and 1 with 0) of randomly selected
positions and chromosomes. The elitist (best performing) member
of the parent population was maintained as a member of the new
population.

The GA does not require linearisation like the linear program-
ming approaches. It also does not suffer the ‘curse of dimensionality’
of dynamic programming. The GA uses the actual objective func-
tion values and not gradients of the response surface as gradient
search methods do. It can therefore easily handle rough and
discontinuous response surfaces. Many GA users also consider it
an advantage that the GA searches with a population of solutions
and not just from a single point like local search methods. The
traditional GA, however, often fails to locate global optima where
these are known and methods to improve its robustness are often

applied. The GA used in this study applied independent sub-
population searches followed by shuffling and then repeated inde-
pendent sub-population searches as a measure against local opti-
mum traps. This approach had been developed in previous work
(Ndiritu and Daniell, 1999; 2001). The use of binary coding
discretises the search space and search is consequently limited to
the resulting multi-dimensional grid. This leads to the failure of the
GA to fine-tune to the optimum which invariably lies outside this
grid. To deal with this, the GA is sometimes combined with a local
search method to fine-tune after an initial GA search. The GA used
here applied a gradual search range reduction if successive genera-
tions located the decision variable within a small portion of the
search range. To maintain robustness of search with range reduc-
tion, a search range shifting (hill climbing) routine was included.
To use fine-tuning and range shifting, two search ranges were set
for each decision variable; an initial range that may be varied as the
optimisation proceeded, and an ultimate search range that was
fixed. Ndiritu and Daniell (1999, 2001) give detailed accounts of
these improvements. Figure 1 is a flow chart of the improved multi-
population GA. The GA is termed as a multi-population GA
because it uses several sub-populations and not a single one.
Though the GA is easily modifiable, some modifications, like the
ones made here, increase the number of optimisation parameters of
the GA itself that have to be suitably selected. The common trial-
and-error approach was used to obtain these and the following
parameter values were adopted: A crossover probability of 1.0, a
mutation probability of 0.05, a tournament size equal to half the
sub-population size, the number of crossover positions equal to the
number of decision variables, and 12 subpopulations with 48
members each. The range reduction and shifting procedures were
carried out after every 5 generations. The maximum number of
generations for all sub-populations was set at 500 while the
maximum number of system simulations was set at 100 000. These
limits were chosen subjectively. All the optimisations, however,
converged before these limits were reached. Termination through
convergence was applied when the average of the best objective
function values of the second last 5 generations exceeded 99% of
the average of the best objective function values of the last 5
generations.

System simulation and penalty computation

The Elands River system up to Mkombo Dam is located to the
north-east of Pretoria, South Africa. The upper dam, Rust de
Winter, has a catchment area of 1 145 km2 and a mean annual runoff
(MAR) of 19.8 mm. The incremental area to Mkombo is 2 578 km2

and the MAR from this area is 3.9 mm. The MAR from the whole
catchment to Mkombo is 32.8 Mm3/a. The live storage capacity of
Rust de Winter and Mkombo Dams is 26.9 and 204.6 Mm3

respectively. The Department of Water Affairs and Forestry (DWAF)
provided 77 years of simulated monthly runoffs and point rainfalls
at the two sites. DWAF also provided the monthly average Symon’s
pan evaporations and area-volume data for the reservoir sites.
Second-order polynomials were used to model the area-capacity
relationships. The monthly distributions of demand from the two
reservoirs were obtained from a previous study (DWAF, 1989).

Figure 2 shows the system configuration and how the penalties
were computed. The water supply and environmental penalties
were factored in direct proportion to the volume not supplied and
a factor (in boldface) which indicates the relative cost of non-
supply of a unit volume of water. The penalties were chosen
subjectively but reflect the approach applied in the South African
water resource yield model and the water resource planning model.
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Rust de Winter Dam was taken to supply irrigation (as in the real
system) and lower penalties were assigned to this demand than
Mkombo Dam demands which are domestic and industrial. More
severe supply restrictions were also allowed for Rust de Winter
Dam. The storage state penalties were factored in proportion to live
storage capacity. The penalties as given in Fig. 2 were then scaled
against the maximum possible penalties – zero supply, zero envi-
ronmental flow and no water in reservoir live storage. The water
supply and environmental penalties were grouped together since
both have the same dimensions while the storage state penalties
were scaled separately. The two scaled penalties were then com-
bined and weighted to give a single overall penalty that took values
only in the range 0 to 1. The water supply and environmental flow
penalties were subjectively weighted at twice the storage state
penalties. The objective function then took the form:
maximise 1-overall scaled penalty.

System simulation was carried out on a monthly basis using
mass balance assuming the reservoirs were initially half full. The
simulation included reservoir operating rules allowing four levels
of supply restrictions, thus giving three rule curves. These were
allowed to vary on a monthly basis. Defining these curves therefore

required 72 values to be obtained from optimisation. The following
four scenarios that represent possible problems that a water re-
source analyst may encounter, were investigated.

Case I The reservoir capacities and demands were fixed and the
operating rules that maximise system performance were
optimised.

Case II The demands were fixed and the capacities and operat-
ing rules that maximise system performance were
optimised.

Case III The capacities were fixed and the operating rules and
demands that give the best performance were optimised.

Case IV The capacities, demands and the operating rules that
maximise system performance were optimised.

The number of parameters to optimise were therefore 72, 74, 74 and
76 for Cases I, II, III and IV respectively. For Cases I and II, the
demands were set to high values of 90% of the firm yield obtained
in a previous study of the system (DWAF, 1989). The search ranges
for the capacities were 0 to 50 and 0 to 250 Mm3 for Rust de Winter
and Mkombo Dams respectively for Cases II and IV. The search

Figure 1
Flow chart of multi-population genetic algorithm
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ranges for the demands for Cases II and IV were 0 to 13.6 and 0 to
8.0 Mm3/a for Rust de Winter and Mkombo Dams respectively. The
upper limits are the 90% firm yield values from DWAF (1989). The
fixed reservoir capacities for Cases I and III were set to the active
storages of the existing reservoirs. The 72 operating rule curve
values could vary from 0.01 to 0.99 with the constraint that the
width of each storage restriction zone was at least 0.1 of the
reservoir capacity. This constraint was implemented by factoring
the objective function value by 0.5 for any violation. The environ-
mental flow requirements were assumed to be 10% of the monthly
natural flow. None of the 4 cases attempted to model the real system
as it exists especially with regards to demands and non-consump-
tive water utilisation. All the cases were therefore theoretical but
were considered realistic enough to indicate how well the GA
would handle real reservoir system optimisation problems.

Results and discussion

Tables 1 and 2 present the optimised results for the four cases and
Fig. 3 the corresponding monthly operating rule curves. A single
optimisation took about 6 min on a 1 000 MHZ Pentium IV
processor. As expected, Case IV obtained the highest objective
function value because more parameters were available to optimise.
Fixing the demand (Case II) imposed a more severe constraint than
fixing the capacity (Case III). Case III therefore gave a higher
objective function than Case II. The exceedance probabilities
(Table 2) indicated that there was a difficulty meeting the Mkombo
supply at restrictions lower than 10% even for Cases III and IV
where the target draft was optimised. This could be attributed to
high evaporation losses due to the large surface area and/or the
environmental flows which were not subject to optimisation.  Cases
I and II revealed high exceedance probabilities of storage states
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Figure 2
System configuration and penalty computation

TABLE 1
 Optimised capacity, drafts and supply

Parameter Case I Case II Case III Case IV

Capacity Rd W (Mm3) 26.943* 22.056 26.943* 4.366
Capacity Mkombo (M 3) 204.592* 195.784 204.592* 211.039
Target draft  RdW (Mm3/a) 13.600* 13.600* 0.502 0.491
Target draft  Mkombo (Mm3/a) 8.000* 8.000* 7.376 7.962
Actual supply RdW  (Mm3/a) 10.390 10.075 0.500 0.485
Actual  supply Mkombo  (Mm3/a) 7.453 7.504 7.185 7.802
% of supply/demand (RdW) 76.39 74.08 99.56 98.84
% of supply/demand (Mkombo) 93.16 93.79 97.41 97.99
Objective function 0.982 0.985 0.991 0.996
Number of function evaluations 12672 12672 12672 12672

* these parameters were set to the specified values  - were not optimised.
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lower than 0.2 for both reservoirs.
In light of the uncertainties in practical water resources man-

agement, the provision of alternative solutions of satisfactory
performance is likely to be more worthwhile than the single
solution that gives the best objective function value. The ability of
the GA to provide these has been observed and highlighted in water
supply and system distribution applications but not prominently in
water resource systems analysis. The system analysed here is
relatively simple, it therefore does not test or demonstrate this
ability thoroughly but is nonetheless useful. Case IV was selected
for this purpose.

The average objective function value of the best solutions from
the 24 subpopulations of case IV (2 epochs of 12 subpopulations
each) was 0.992. The standard deviation of the objective function
values was 0.003 indicating that the performance of all the 24
solutions was practically identical. The relationships among ca-
pacities and drafts from the 24 solutions are illustrated in Fig. 4.
Curve fitting equations are not included as they would not serve any
specific purpose. Many alternative combinations of capacities and
demands (target drafts) can be obtained from this figure. Figure 5
presents the exceedance probabilities of given supply levels and
storage states obtained from the 24 solutions. The inability of
Mkombo Dam to supply 95% or 100% of the demand at a reliability
greater than 0.8 is seen in Fig. 5b. Figure 5d shows the difficulty of
Mkombo Dam to maintain a storage state greater than 70% for more

TABLE 2
Exceedance probabilities of optimised solutions

Supply/ Case I Case II Case III Case IV
demand

Rust de Winter

1 0.592 0.6916 0.0162 0.0617
0.9 0.592 0.6916 0.0162 0.0617
0.7 0.4307 0.4394 0 0.0141
0.5 0.2197 0.2489 0 0.0054

Mkombo

1 0.8074 0.7716 0.4459 0.369
0.95 0.8074 0.7716 0.4459 0.369
0.9 0.4524 0.4188 0.0271 0.0162

0.85 0.0736 0.026 0 0

Storage state Case I Case II Case III Case IV

Rust de Winter

0.7 0.618 0.6342 0.0152 0.0509
0.4 0.4535 0.4675 0 0.0162
0.2 0.29 0.3139 0 0.0097

Mkombo

0.7 0.882 0.8604 0.4448 0.395
0.4 0.5703 0.5249 0.053 0.0335
0.2 0.2392 0.2197 0 0

Environmental flows

Rust de Winter 0.1101 0.1156 0.0794 0.0477
Mkombo 0.2434 0.1168 0.2732 0.1442

than 25% of the time. The average rule curves with bands of ±1
standard deviation for the 24 solutions of Case IV are given in
Fig. 6. These constitute the probable range of the optimal operating
rules for the system. Figure 6 reveals the absence of notable
seasonal variations of the operating rules. This implies that operat-
ing rules based on the seasonal instead of monthly time interval
may be adequate. This would simplify the optimisation problem
considerably. The rule curves for the third level of supply restric-
tion in Figs. 3 and 5 seem unrealistically low for actual reservoir
operation. This problem could be avoided by setting the lower
search limit of the rule curve to a reasonably higher value than
0.01 as used here. By providing larger weights to the storage state
penalties in relation to the weights for water supply and environ-
mental flow, the unrealistically low rule curves could be avoided.

It is worthwhile remembering that although the analysis here
used real hydrological data from the Elands River catchment, the
demands, the environmental flow requirements and the penalty
structure were hypothetical. The analysis is therefore not an indi-
cator of the performance of the existing system.

Conclusions

A multi-population genetic algorithm (GA) has been applied to
optimise a system of two reservoirs that supplies monthly varying
demands and environmental flows. Optimisation aimed at mini-
mising the penalty resulting from non-supply of water and the
occurrence of low reservoir storage states that would inhibit non-
consumptive water utilisation. The problem used real hydrological
data from the Elands River catchment in South Africa but the
demands, the environmental flow requirements and penalty struc-
ture were hypothetical. The GA obtained reasonable least-penalty
solutions for the four cases analysed. A more detailed analysis of
one of the cases demonstrated the ability of the GA to provide
several high-performance solutions of varied sizes and supply
capabilities. The expected range of monthly operating rule curves
for optimal system performance was obtained. The analysis also
revealed the inability of one of the reservoirs to supply demands at
low restriction levels and high reliability, and to maintain high
storage states. This is an indicator that GA optimisation could be
used to systematically identify the critical areas of multi-reservoir
system performance.

The system applied is relatively simple and so did not incorpo-
rate a search of  alternative system configurations. This aspect
could be tested using a more complex system that  could also apply
stochastically generated sequences in place of the single one
applied here. Analysis of complex systems with stochastically
generated data could be expensive computationally. Improving the
efficiency and effectiveness of the GA, and the use of other
population-based optimisation techniques (e.g. SCE-UA, Duan et
al., 1992) are thus reasonable areas of further research.
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